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Abstract

Let X = Spec(A) be a real smooth affine variety with dimX =

n ≥ 2, K = ∧nΩA/R and L be a rank one projective A−module.

Let E(A, L) denote the Euler class group and M be the manifold of

X. (For this talk we assume M is compact.) Recall that any rank

one projective A−module L induces a bundle of groups GL on M

associated to the corresponding line bundle on M. In this talk, we

establish a cannonical homomorphism

ζ : E(A, L) → H0(M,GLK∗)
∼

→ Hn(M,GL∗),

where the notation H0 denotes the 0th homology group and Hn de-

notes the nth−cohomology group with local coefficients in a bundle

of groups. In fact, the isomorphism H0(M,GLK∗)
∼

→ Hn(M,GL∗) is

given by Steenrod’s Poincaré duality. Further, we prove that this ho-

momorphism ζ factors through an isomorphism

E(R(X), L ⊗ R(X))
∼

→ H0(M,GL)

where R(X) = S−1A and S is the multiplicative set of all f ∈ A that

do not vanish at any real point of X.
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The obstruction theory in topology is rich and clas-

sical. The advent of obstruction theory in algebra (of-

ten known as Euler class theory) is a more recent phe-

nomenon.

1 Obstruction theory in topology

In topology, for real smooth manifolds M with dim(M) =

n and for vector bundles E of rank(E) = r ≤ n,

there is an obstruction group H(M, E), and an invari-

ant w(E) ∈ H(M, E), to be called the Whitney class

of E , such that

1. If rank(E) = n then E has a nowhere vanishing

section if and only if w(E) = 0.

2. Suppose rank(E) = r < n. If E has a nowhere

vanishing section, then w(E) = 0. On the other

hand, if w(E) = 0 then E|Mr
has a nowhere van-

ishing section, where Mr is the r−skeleton in any

cell complex decomposition of M.

3. In fact,

H(M, E) = Hr(M, πr−1(E
0))

is the cohomology group with local coefficients

in the bundle of abelian groups πr−1(E
0) over M
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whose fiber at x ∈ M is the homotopy group

πr−1(Ex \ 0).

4. Note that, if E is a Riemannian vector bundle,

then

πr−1(E
0) = πr−1(S(E)) := ∪x∈Mπr−1(S(E)x)

where S(E) ⊆ E is the unit sphere bundle of E .

This follows from the fact that S(E) is a deforma-

tion retract of E0.

5. In ([MaSh3]), a bundle GL of abelian group associ-

ated to any line bundle L is defined and an isomor-

phism πr−1(E
0) ≈ G∧rE , is established. Therefore,

given an isomorphism χ : L
∼
→ ∧nE , there is an

isomorphism

ε : Hr(M, πr−1(E0))
∼
→ Hr(M,GL).

By this isomorphism, the Whitney class w(E) can

be identified as

w(E , χ) := ε(w(E)) ∈ Hr(M,GL).
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2 Obstruction theory in algebra

In the early nineties, Nori outlined a program for an

obstruction theory in algebra. The program of Nori

mirrors the already existing theory in topology for

vector bundles E over a manifold M with dim M =

rank(E) = n ≥ 2. Accordingly, for smooth affine alge-

bras A over infinite fields k with dim(A) = n ≥ 2, and

for projective A−modules L with rank(L) = 1, Nori

outlined a definition ([MS], later generalized in [BS2])

of an obstruction group E(A, L), which contains an

invariant e(P, χ) for any projective A−module P of

rank n with orientation χ : L
∼
→ ∧nP, such that con-

jecturally, e(P, χ) = 0 if and only if P ≈ Q ⊕ A for

some projective A−module Q. We denote,

e(P ) := e(P, id) ∈ E(A,∧nP ).

In fact, an orientation χ : L
∼
→ ∧nP induces an iso-

morphism

fχ : E(A,∧nP )
∼
→ E(A, L) and fχ(e(P )) = e(P, χ).

Essentially, all the conjectures given at the time when

the program was outlined were proved and the pro-

gram of Nori flourished beyond all expectations. Among
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the major and important papers on this program are

([Ma1, MS, MV, BS1, BS2, BS4, BDM]).

It is also worth mentioning, that the program of

Nori was preceded by the work of M. P. Murthy and

N. Mohan Kumar ([MkM, Mk2, Mu1, MM]) on similar

obstructions for projective modules P over (smooth)

affine algebras A over algebraically closed fields k, with

dim A = rank(P ), where the top Chern class C0(P )

was used as obstruction.
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The Main point

The main point of this talk is to reconcile the re-

cently developed theory in algebra for projective mod-

ules of top rank and the existing classical theory in

topology, in such top rank case.

Notation 2.1 Let X = Spec(A) be a real smooth

affine variety. We assume dim A = n ≥ 2. We fix a

few notations as follows:

1. The manifold of real points of X will be denoted by

M = M(X). We assume M 6= φ and is compact.

We have dim M = n.

2. The ring of all real-valued continuous functions on

M will be denoted by C(M).

3. We write R(X) = S−1A, where S denotes the mul-

tiplicative set of all functions f ∈ A that do not

vanish at any real point of X.

4. Usually, L will denote a projective A−module of

rank one and L will denote the line bundle over

M, whose module of cross sections comes from L,

i.e. Γ(L) = L ⊗ C(M) ([Sw]).

Our main question is whether there is a canonical

homomorphism from the algebraic obstruction group
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E(A, L) to the topological obstruction group H(M,L).

3 The Main Results

In this section, we describe results from our recent pa-

pers ([MaSh1, MaSh2, MaSh3]). Our final theorem is

the following:

Theorem 3.1 With notations as in 2.1, we establish

an isomorphism

ζ : E(R(X), L)
∼
→ Hn(M,GL∗).

Note that this gives a completely algebraic description

of the singular cohomomolgy Hn(M, Z).

Further, for a projective R(X)−module P with rank(P ) =

n, and L = ∧nP, we have

ζ(e(P )) = w(E∗).
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3.1 The oriented case

In this section, we outline the proof of the main theo-

rem 3.1, in the simpler case of oriented varieties. We

bring the following definition from topology.

Definition 3.2 Let M be a smooth oriented manifold

of dimension n. Let v ∈ B be a point and V be an open

neighborhood of v. Suppose

f = (f1, . . . , fn) : V → R
n

is an ordered n−tuple of smooth functions such that

f has an isolated zero at v. Now fix a parametrization

ϕ : R
n ∼
→ U ⊆ V, compatible with the orientation

of M, where U is a neighbourhood of v = ϕ(0). By

modifying ϕ, we assume that fϕ vanishes only at the

origin 0 ∈ R
n. Define index jv(f1, . . . , fn) to be the

degree of the map

γ =
fϕ

‖ fϕ ‖
: S

n−1 → S
n−1.

That means,

jv(f1, . . . , fn) = deg (γ) := Hn (γ) (1) ∈ Z

where

Hn (γ) : Hn (Sn, Z) = Z → Hn (Sn, Z) = Z

is the induced homomorphism.
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Recall, that X = spec(A) is said to be oriented, if

KX = ∧nΩA/R is trivial.

Proof of theorem 3.1 in the oriented case: In the

oriented case, with M compact, the obstruction group

in topology

H(M,GM×R) = Hn(M, Z) ≈ Z

is the more familiar singular cohomology groups with Z

coefficients. Therefore, in this case, we want to define

a homomorphism (isomorphism):

ζ : E (R(X), R(X))
∼
→ Hn(M, Z) = Z.

1. Recall, generators of E (R(X), R(X)) are given by

(m, ω), where m is a (real) maximal ideal of R(X)

and ω : R(X)/m
∼
→ ∧nm/m2 is an isomorphism,

to be called a local orientation.

2. Such a generator, gives rise to an equivalence class

of generators (f1, f2, . . . , fn) of m/m2.

3. Now we define

ζ : E(R(X), R(X)) → Hn(M, Z) ≈ Z.

by

ζ(m, ω) = jv(f1, f2, . . . , fn)

where m and (f1, f2, . . . , fn) are as above.
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4. The relations in E(R(X), R(X)) are induced by

complete intersections

(f1, f2, . . . , fn) = m1 ∩ m2 ∩ · · · ∩ mk

where m1, . . . , mk are distinct (real) maximal ide-

als of R(X). Also let vi ∈ M denote the point in

corresponding to mi.

To see that ζ is well defined, we only need to see

that ∑
jvi

(f1, f2, . . . , fn) = e(T )

is the topological Euler class of the trivial bundle

T, and hence e(T ) = 0.

5. Now let P be projective R(X)−module of rank n,

with trivial depterminant. Then, for an orienta-

tion χ : R(X)
∼
→ ∧nP the Euler class e(P, χ) is

induced by surjective homomorphisms

s : P ։ m1 ∩ m2 ∩ · · · ∩ mk

where m1, . . . , mk are distinct (real) maximal ide-

als of R(X). Again, with vi ∈ M as the points

corresponding to mi, we have

ζ(e(P, χ)) =
∑

jvi
(f1i, . . . , fni)

where (f1i, . . . , fni) is a set of generators of mi/m
2
i ,

induced by s, respecting the local orientation χ.

10



From results in topology, the right hand side is the

Whitney class w(E∗). This completes the proof.

4 Applications

We have the following consequence of the main theo-

rem 3.1.

Theorem 4.1 Let X = Spec(A), R(X), M 6= φ be as

in (2.1) and let CH0(R(X)) denote the Chow group

of zero cycles of R(X) modulo rational equivalence.

Then, the following diagram

E(R(X), L)
ζ

//

Θ
��

Hn(M,GL)

µ
��

CH0(R(X))
ζ0

// Hn(M, Z/(2)).

commutes, where Θ, µ are the natural homomorphisms

and ζ0 is an isomorphism.
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The following is another application:

Theorem 4.2 We use the notations as in (2.1), Then,

there is a canonical isomorphism ζ0 : CH0(R(X))
∼
→

Hn(M, Z/(2)) such that the diagram

K0(A) //

C0

��

K0(R(X)) //

C0

��

KO(M)

swn

��

CH0(A) // CH0(R(X))
ζ0

// Hn(M, Z/(2))

commutes. Here C0 denotes the top Chern class ho-

momorphism, and swn denotes the top Stiefel-Whitney

class homomorphism.
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Example 4.3 As in (2.1), suppose X = Spec(A) is a

smooth real affine variety with dimX = n ≥ 2 and M

is the manifold of real points of X. We assume M is

nonempty.

Assume CHC(X) 6= 0, where CHC(X) ⊆ CH0(X)

denotes the subgroup the Chow group of zero cycles of

X modulo rational equivalence. Let L be a projective

A−module with rank (L) = 1.

Then, there is a projective A−module with rank (P ) =

n and det P
∼
→ L such that

1. P does not have a unimodular element,

2. but the corresponding vector bundle V = V (P ),

whose module of sections Γ(V ) = P ⊗ C(M) has

a nowhere vanishing section.

Proof. The following diagram of exact sequences

0 // EC(L)

≀ ϕ
��

// E(A, L)

Θ
��
��

// E(R(X), L) //

��
��

0

0 // CHC(X) // CH0(A) // CH0(R(X)) // 0

Let x be a complex point in X such the cycle [x] ∈

CH0(X) is nonzero. Let m be a maximal ideal corre-

sponding to x.

By [Mu1, DM2], there is a projective A−module of

rank n and det P = L and an orientation χ : L
∼
→ ∧nP
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such that the top chern class C0(P ) = x 6= 0. The

construction assures that e(P, χ) = ϕ−1(x) ∈ EC(L).

Since e(P, χ) 6= 0 and so P does not have a unimodular

element. Therefore, e(P ⊗R(X), χ⊗R(X)) = 0. Now,

suppose V = V (P ) is the vector bundle on M with

module of sections Γ(M, V ) = P⊗C(M). Then, by our

theorem, e(V ∗, χ′) = ζ(e(P ⊗ R(X), χ ⊗ R(X))) = 0.

So, V ∗ has a nowhere vanishing section and so does V.

This completes the proof.

Example 4.4 M. P. Murthy communicated the fol-

lowing example:

Let

A =
R[X0, X1, . . . , Xn](∑

Xd
i − 1

) where d > n + 1.

Then CHC(A) 6= 0.
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5 Real spheres

In this section, we do some calculus of Euler class (ob-

struction) theory on the algebraic spheres. Write

An =
R[X0, X1, . . . , Xn]

(X2
0 + X2

1 + · · · + X2
n − 1)

.

Swan ([Sw2]) established that the algebraic and topo-
logical K−theory of spheres are the same. So, by Bott
periodicity theorem ([ABS]) the following chart

n = 8r 8r + 1 8r + 2 8r + 3 8r + 4 8r + 5 8r + 6 8r + 7

K̃0(An) ≈ K̃O(Sn) Z Z2 Z2 0 Z 0 0 0

describes the Grothendieck groups K0(An) of An. We

also have the Chow group of zero cycles

CH0(An) = Z/(2)

and by results in ([BDM]), the Euler class group

E(An, An) = E (R(Sn), R(Sn)) = Z.

Let Tn denote the tangent bundle on Spec(An). We

compute the Euler class

e(Tn, χ) = ±2 for n even; and e(Tn, χ) = 0 for n odd.

This provides a fully algebraic proof that the algebraic

tangent bundles Tn over even dimensional spheres Spec(An)
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do not have a free direct summand. Note that the Eu-

ler class e(Tn, χ) agrees with the topological Euler class

e(Tn, χ) (see [MiS]).

The other problem we consider is whether every

element in E (An, An)) = Z can be realized as the

Euler class e(P, χ) of a projective Anmodule P with

rank(P ) = n and orientation χ : A
∼
→ ∧nP?

The following summary evolved:

Theorem 5.1 Let P denote any projective An−module

of rank n ≥ 2 and χ : An
∼
→ det P be an orientation.

Then

1. For n = 8r +3, 8r +5, 8r +7 we have K̃0(An) = 0.

So, the top Chern class C0(P ) = 0 and e(P, χ) =

0.

2. For n = 8r+6, we have K̃0(An) = 0. So, C0(P ) =

0, and hence e(P, χ) is always even. Further, for

any even integer N there is a projective An−module

Q with rank(Q) = n and an orientation η : An
∼
→

det Q, such that e(Q, η) = N.

3. For n = 8r + 1, we have K̃0(An) = Z/2. If e(P, χ)

is even then C0(P ) = 0. So, P ≈ Q ⊕ An and

e(P, χ) = 0 for all orientations χ. So, only even

value e(P, χ) can assume is zero.
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4. Now consider the remaining cases, n = 8r, 8r +

2, 8r + 4. We have

K̃0(A8r) = Z, K̃0(A8r+2) = Z/2, K̃0(A8r+4) = Z.

As in the case of n = 8r + 6, for any even integer

N, for some (Q, η) the Euler class e(Q, η) = N. If

N is odd, then e(P, χ) = N for some (P, χ) if and

only if e(P, χ) = 1 for some (P, χ) if and only if

the top Stiefel-Whitney class wn(V ) = 1 for some

vector bundle V with rank(V ) = n.
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