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1. Introduction

This is the first one of a number of articles ([MS,M1,M2]) dedicated
to extending the theory of derived Witt groups, due to Paul Balmer, to
non-regular schemes. We restrict ourselves to the derived categories of
complexes, whose homologies have finite projective dimension.
This introduction also serves as a prelude to the same for all the articles in
this series.

In this article, we develop some background for this series, including
a definition of Witt groups of full subcategories of triangulated categories
with duality, and a version of the dévissage theorem [BW, Theorem 6.1] for
Witt groups of Cohen-Macaulay rings. To introduce this theorem, let A be a
commutative Noetherian domain of dimension d with 2 invertible and K be
its quotient field. It is a classical question (known as purity) as to when the
map W (A) → W (K ) is injective. Purity is a conjecture when A is a regular
local ring and is affirmatively settled in ([CS,OP,OPSS]).

In general, we can extend the above map to the right for any regular
scheme by considering the Gersten-Witt complex. Let X = Spec(A) be of
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dimension d with 2 invertible and X (n) denote the points of codimension n.
A Gersten-Witt complex

0 → W (A) →
⊕

x∈X (0)

W (k(x)) →
⊕

x∈X (1)

W (k(x)) → · · · →
⊕

x∈X (d)

W (k(x)) → 0

was first constructed by Pardon [Pa1]. He further conjectured the exactness of
this sequence for regular local rings and affirmatively settled it in many cases.

Subsequently, with the introduction of triangular Witt groups by Balmer
[B1,B2,B3], Witt groups could be viewed as a cohomology theory. Using this,
another Gersten-Witt complex could be defined (though both complexes look
similar, it seems unproven that the differentials match) [BW], similar to the
one in K-theory. Once again it is an open question as to when the complex is
exact. In particular, it is conjectured to be so when X = Spec(A) where A is a
regular, local ring and this is affirmatively settled in ([B4,Pa1,Pa2,B4,BGPW]).
[B1,B2,B3,BW] form the basic backbone of the methodologies in this article
and we would like to remark that the interested reader would be well advised
to take a look at them. For any unexplained notations and definitions in the
introduction, please refer to (2.1).

The key result which allows one to move from derived Witt groups to
the Gersten-Witt complex is dévissage [BW, Section 6] which states that
for a regular, local ring (A,m, k), of dimension d , we have W n(Db

f l(A))
∼=

W (k) if n ≡ d mod 4 and W n(Db
f l(A))

∼= 0 otherwise. We describe below
the generalized form of this theorem for a Cohen-Macaulay ring A with
dim Am = d for all maximal ideals m and 2 invertible.

Suppose A is a Cohen-Macaulay ring with dim A = d . Since there are
modules of infinite projective dimension over such a ring and of finite length,
the usual duality Extd( , A) does not work well. The options are either to
change the duality (w.r.t. the canonical module) but then use the category
of all modules (coherent Witt groups) or impose finite projective dimension
homology conditions on the complexes. The first path is taken and deeply
studied in Pardon [Pa2,Pa3] and more recently in Gille [G1,G2], where they
also establish a Gersten-Witt complex of coherent Witt groups.

In this article, we take the second approach. Let MF P D(A) be the
category of finitely generated A-modules with finite projective dimension,
MF L(A) be the category of finitely generated A-modules with finite
length, and A = MF P D f l(A) be the full subcategory of finitely generated
A-modules with finite projective dimension and finite length (the
“intersection”). Note then that A is an exact category and has a natural duality
given by M �→ ExtdA(M, A) and so we can consider the Witt group W (A).
By Balmer [B2], we already know that W (A) ∼= W d(Db(A)).

We consider the category Db
A(A) with homologies in A. Based on the

fact that A actually has the 2-out-of-3 property for objects, we prove that the
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duality actually restricts to Db
A(A) and this allows a suitable definition of Witt

groups W i (Db
A(A)). Once defined, we prove that the above isomorphism

actually factors through isomorphisms W (A)
∼−→ W d(Db

A(A))
∼−→

W d (Db(A)).
We now consider the category Db

A(P(A)). Similar to Db
A(A), we

establish that this category is stable under duality and define the Witt groups
W i (Db

A(A)). Having done so, we prove our version of dévissage (5.12,6.7):

W (A) ∼−→ W d (Db
A(P(A)))

W−(A) ∼−→ W d+2(Db
A(P(A)))

W d+1(Db
A(P(A))) ∼= W d−1(Db

A(P(A))) ∼= 0.

Note that when A is regular, this is exactly the same theorem as that in
[BW]. Further, in the Gorenstein case, there is a natural commuting square
involving the above dévissage statement and the dévissage statement in [G1],
for coherent Witt groups. As of now, we do not know if these sets of groups
coincide or not, which would also be a subject of future investigations.
However, we point out that there are more forms and neutral spaces in the
realm of coherent Witt theory. Since we prove the theorem without regularity
assumptions or the existence of a natural dualizing complex, we do not have
access to the equivalences of the derived categories with duality as in [BW]
or [G1] (in particular we cannot use the powerful lemma of Keller [K, §1.5,
Lemma and Example(b)]). Our proof is thus necessarily more elementary
and naı̈ve than the one in [BW]. One of the key ingredients in the proof
is the construction of a special sublagrangian (5.6) for symmetric forms in
(Db

A(P(A))).
In deed, the methods in this paper have much wider applications and set

the tone of arguments used in the rest of the articles in this series (loc. cit).
A key to these methods is to use the sublagrangian theorem of Balmer ([B3]),
to construct symmetric forms of complexes, Witt equivalent to a given form,
with shorter length. Methods also provide further insight into nonsingular
varieties ([M1]). Our interest in these studies stems from the introduction
of the Chow-Witt groups C̃ H

r
(A) for 0 ≤ r ≤ d , due to Barge and Morel

[BM] and developed by Fasel [F1], as the obstruction groups for splitting
of projective modules, which works best for nonsingular varieties. This
also serves as a motivation for our interest in maintaining the category of
projective modules in our statement of dévissage. Jean Fasel informs that, for
singular varieties X , Chow-Witt groups C̃ H

r
(X) and obstruction classes can

be defined in the same manner, using coherent Witt groups. However, it is not
known whether vanishing of the obstruction classes would lead to splitting.
We feel that, for the purpose of developing an obstruction theory for singular
varieties, it would be more natural to consider some analogue of the derived
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Witt groups of the category of projective modules. This approach would be
of its own independent interest for both computations and applications.

We make a few comments about the layout of the article. The article
was written with the readership in mind and provides some extra details.
In section 2, we establish the basic definitions and a key result on projective
dimensions. In the section 3, we establish the important theorem that the
categories Db

A(P(A)) and Db
A(A) are closed under duality, and more

specifically how the homologies of the dual look like. Once this is established,
in section 4, we define the Witt groups of the above categories and expectedly,
they are 4-periodic, i.e. W n(Db

A(P(A)))
∼−→ W n+4(Db

A(P(A))). Finally, in
sections 5 and 6, we prove our main theorems about dévissage.
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many helpful discussions and guidance. Thanks are also due to Manuel
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2. Basic notations and preliminaries

Notations 2.1. Throughout this article, A will denote a Cohen-Macaulay
ring with dim Am = d ≥ 2, for all maximal ideals m of A. Further, 2 is
always invertible in A. We set up the notations:

1. M(A): category of finitely generated A-modules.
2. MF P D(A): full subcategory of finitely generated A-modules with finite

projective dimension.
3. MF L(A): category of finitely generated A-modules with finite length.
4. A = MF P D f l(A): category of finitely generated A-modules with finite

length and finite projective dimension.
5. P(A): category of finitely generated projective A-modules.
6. For any exact category C, Chb(C) is the category of bounded chain

complexes with objects in C, and Db(C) is its derived category.
7. For any two exact categories C,D in an ambient abelian category C′,

Chb
D(C) is the full subcategory of Chb(C) consisting of complexes with

homologies in D. Db
D(C) is its derived category, which is also the full

subcategory of Db(C) consisting of objects from Chb
D(C).

8. R: full subcategory of Db
A(P(A)) consisting of objects P• such that

Pi = 0 for i > d, i < 0 and Hi (P•) = 0 for all i 
= 0 and H0(P•) ∈ A.
9. For objects M in A, let M∨ = ExtdA(M, A) and �̃ : M

∼−→ M∨∨ be the
identification by double ext. (but we make this more precise in diagram
((5)) and the explanation of ι.)
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10. We will denote complexes P• by:

· · · 0 �� Pm
∂m �� Pm−1 �� · · · · · · �� Pn �� 0 · · ·

11. A non-zero complex P• is said to be supported on [m, n] if Pi = 0 for all
i < n and i > m.

12. For a complex P• of projective A-modules P∗• will denote the usual dual

induced by Hom(∗, A) and� : P•
∼−→ P∗∗• will denote the identification

by evaluation. Note that the degree r-component of the dual P∗• is (P−r )
∗.

13. The length of a non-zero complex P• is defined as �(P•) = u − l where
Pu 
= 0, Pl 
= 0 and Pi = 0 for all i < l and i > u.

14. Let Br = Br (P•) := ∂r+1(Pr+1) ⊆ Pr denote the module of r-boundaries
and Zr = Zr (P•) := ker(∂r ) ⊆ Pr denote the module of r-cycles (or the
r th syzygy).

15. The r th-homology of P• will be denoted by Hr = Hr (P•) := Zr
Br

.

So, the r th-homology of the dual is Hr (P∗• ) = ker(∂∗−(r−1))

image(∂∗−r )
.

16. A full exact subcategory C of an abelian category D is said to have the
2-out-of-3 property if for every short exact sequence in D, whenever two
of the objects are objects of C, then so is the third.

Remark 2.2. The subcategory MF P D(A) and A are both exact sub-
categories and in fact have the 2-out-of-3 property. The category R is also
an exact category. Although it is a subcategory of Db

A(P(A)), it has no
translation and is actually naturally equivalent to the category A. The natural
functor η : R → A is given by sending a complex Q• to H0(Q•). The inverse
functor ι is given by associating to objects M ∈ A a projective resolution of
length d .

Note further that when A is not regular, the categories Db
A(P(A)) and

Db
MF P D(A)(P(A)) are not closed under the cone operation as the following

example demonstrates.

Example 2.3. Let (A,m) be a non-regular Cohen-Macauly ring with
dim A = d , such that m = ( f1, f2, . . . , fd , z). We can assume, using
prime avoidance, that f1, f2, . . . , fd is a regular sequence. Let U• =
K os•( f1, f2, . . . , fd) be the Koszul complex. Since the only nonzero
homology of U• is H0(U•) = A

( f1, f2,..., fd )
∈ A, U• and all its translates

are objects of both the categories above. Let C(z) denote the cone of the the
chain complex map z : U• −→ U•. From the long exact homology sequence
corresponding to the short exact sequence of chain complexes

0 �� U• �� C(z) �� U•[1] �� 0
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it follows that

H0(Cone(z)) ∼= coker

(
A

( f1, f2, . . . , fd)

·z→ A

( f1, f2, . . . , fd)

)
∼= A

m
/∈ A.

So, C(z) is not an object in Db
A(P(A).

Next, we ask if Chb
MF P D(P(A)) is closed under duality. We thank Sankar

Dutta for providing the following example:

Example 2.4 (Dutta). Let (A,m, k) be any non-regular Cohen-Macaulay
local ring, with dim A = d . Let

· · · �� Pd
∂d �� Pd−1 �� · · · �� P0 �� k �� 0

be a projective resolution of k. Let ∗ denote Hom(−, A) and
M = cokernel(∂∗

d ). Since Extr (k, A) = 0 for all 0 ≤ r < d , the sequence

0 �� P∗
0

�� · · · �� P∗
d−1

�� P∗
d

�� M �� 0

is a projective resolution of M . Dualizing this sequence, it follows that
ExtdA(M, A) ∼= k, which does not have finite projective dimension.
In particular, Chb

MF P D(P(A)) is not closed under duality.

Note however that in the above example, M does not have finite length.
Indeed, we will prove in section 3 that the category Chb

A(P(A)) is closed
under duality.

We mention a few standard results for the sake of completeness.

Lemma 2.5. Let (A,m) be a Cohen-Macaulay local ring with
dim A = d. Let M ∈ MF L(A). Then Further, Exti (M, A) = 0 for all i < d.
and Extd(M, A) 
= 0 is also in MF L(A). Note further that if M ∈ A, then
so is Extd(M, A).

Lemma 2.6. Let A be a Cohen-Macaulay ring with dim A = d. Let M ∈ A.
There is a natural isomorphism

� : M
∼−→ M∨∨.

Corollary 2.7. (A,∨ ,±�̃ ) are exact categories with duality.

Proposition 2.8. Let A be Cohen-Macaulay with d = dim Am ≥ 2 for all
maximal ideals m. Let P• be a complex in Chb(P(A)). Assume that all the
homologies Hr := Hr (P•) ∈ A. Then we claim:

1. The modules Br and Zr have finite projective dimension ∀r . In that case,
proj dim(Zr ) = proj dim(Br−1)− 1.
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2. For all r ∈ Z, we have proj dim Br ≤ d − 1 and so proj dim Zr ≤ d − 2.
3. If Hr 
= 0 then proj dim Br = d − 1.

Proof. Note that P• is a bounded complex and so let it be supported on [m, n].
Then Zn = Pn and so has finite projective dimension. Since there are short
exact sequences:

0 → Br → Zr → Hr → 0 0 → Zr → Pr → Br−1 → 0,

it is clear that if Zr is of finite projective dimension, then so are Br and Zr+1,
and hence the proof follows by induction. The second part of (1) also follows
from the above exact sequence.

Since Br is torsion free, it has depth at least 1 and hence, by the
Auslander-Buchsbaum theorem, proj dim(Br) ≤ d − 1. So, proj dim(Zr ) ≤
d − 2. So, (2) is established.

Now, assume Hr 
= 0. Choose a maximal ideal m in the support of Hr .
Then, consider the localized short exact sequence

0 → (Br)m → (Zr )m → (Hr )m → 0.

Then, we get a long exact sequence of T orAm ( , A/m), which gives us that

T ord
Am
((Hr )m, A/m) ∼= T ord−1

Am
((Br )m, A/m) and T ord

Am
((Br )m, A/m) ∼= 0,

since we have already proved that proj dimA Zr ≤ d − 2. Thus we obtain
proj dimAm (Br)m = d − 1. Since we know that proj dimA(Br) ≤ d − 1, this
implies proj dimA(Br) = d − 1. This establishes (3). �

The complexes in Chb(P(A)) with finite length homologies have at least
d nonzero components at the left where the homology is 0. This proposition
plays a key role in sections 5 and 6.

Proposition 2.9. Let A be Cohen-Macaulay with d = dim Am for all
maximal ideals m. Let P• be a bounded complex of projective modules, such
that Hi = 0 ∀i > n and Hn 
= 0 is of finite length. Then Pi 
= 0, n ≤ i ≤
n + d.

Proof. Since Hi = 0 ∀i > n and the complex is bounded, we get that Pn
Bn

is of finite projective dimension, since the components with indices ≥ n give
a resolution. Now, let m be a maximal ideal in the support of Hn(P•), then
(Hn(P•))m ⊆ (Pn)m

(Bn)m
is of finite length, and hence (Pn)m

(Bn)m
has depth 0. By the

Auslander-Buchsbaum theorem, proj dimAm

( (Pn)m
(Bn)m

) = d . But that means

proj dimA
( Pn

Bn

) = d . Hence, the resolution of Pn
Bn

given by the components
of P• with indices ≥ n must have length at least d . Hence, Pi 
= 0, n ≤ i ≤
n + d . The proof is complete. �
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3. Duality

As always, A will denote a Cohen-Macaulay ring with dim Am = d ≥ 2,
for all maximal ideals m and A = MF P D f l(A). In this section, we prove
that the category Chb

A(P(A)) is closed under duality and give a precise
description of the homologies of the dual.

Theorem 3.1. Suppose P• is a complex in Chb(P(A)) with homologies
in A. Then we have:

Exti (Zr , A) ∼=
{

Extd(Hr+i−(d−1), A) 1 ≤ i ≤ d − 2

0 for i ≥ d − 1
(1)

Exti (Br , A) ∼=
{

Extd(Hr+i−(d−1), A) 1 ≤ i ≤ d − 1

0 f or i ≥ d
(2)

Exti
(

Pr

Br
, A

)
∼=

{
Extd(Hr+i−d , A) 1 ≤ i ≤ d

0 i ≥ d
(3)

Proof. Since Pi = 0 ∀i � 0, the theorem is true for r � 0. So, we assume
that the theorem is true for r − 1 and prove it for r .

Corresponding to the short exact sequence 0 → Zr → Pr → Br−1 → 0,
we get a long exact Ext-sequence which yields

0 → Ext0(Br−1, A) → P∗
r → Ext0(Zr , A) → Ext1(Br−1, A) → 0 (4)

and for i ≥ 1 we have Exti (Zr , A) ∼= Exti+1(Br−1, A). Thus, the induction
hypothesis yields that for i ≥ 1,

Exti(Zr , A) = Exti+1(Br−1, A) =
{

Extd(Hr+i−(d−1), A) 1 ≤ i ≤ d − 2

0 for i ≥ d − 1

So, equation (1) is established.
Consider the long exact Ext-sequence corresponding to the short exact

sequence 0 → Br → Zr → Hr → 0. By (2.5), Exti (Hr , A) = 0 for all i 
= d
and since Exti (Zr , A) = 0 ∀i > d − 2 from equation (1), it follows that

Exti (Br , A) ∼=

⎧
⎪⎪⎨

⎪⎪⎩

Exti(Zr , A), 0 ≤ i ≤ d − 2

Extd(Hr , A), i = d − 1

0, i ≥ d

∼=

⎧
⎪⎪⎨

⎪⎪⎩

Ext0(Zr , A), i = 0

Extd(Hr+i−(d−1), A), 1 ≤ i ≤ d − 1

0, i ≥ d
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Now consider the short exact sequence 0 → Hr → Pr
Br

→ Br−1 → 0.

Again, Exti (Hr , A) = 0 ∀ i 
= d from (2.5) and from equation (2) we get
Exti(Br , A) = 0 ∀i > d − 1. So it follows that

Exti
(

Pr

Br
, A

)
∼=

⎧
⎪⎪⎨

⎪⎪⎩

Exti (Br−1, A), 0 ≤ i ≤ d − 1

Extd(Hr , A), i = d

0, i > d

∼=

⎧
⎪⎪⎨

⎪⎪⎩

Exti (Br−1, A), i = 0

Extd(Hr+i−d , A), 1 ≤ i ≤ d

0, i > d

�

Corollary 3.2. Suppose P• is a complex in Chb(P(A)) with homologies
in A. Then, for all r ∈ Z

Exti (Br , A), Exti(Zr , A), Exti
(

Pr

Br
, A

)

are in A for i ≥ 1 and are in MF P D(A) for i = 0.

Proof. By (2.5) and the preceding theorem (3.1), for i ≥ 1, the statement
is clear. For i = 0, we recall below equation (4) from the preceding
proof:

0 → Ext0(Br−1, A) → P∗
r → Ext0(Zr , A) → Ext1(Br−1, A) → 0.

and that we also proved Ext0(Br , A) ∼= Ext0(Zr , A) and Ext0
( Pr

Br
, A

) ∼=
Ext0(Br−1, A). Hence, it is enough to know that Ext0(Br−1, A) satisfies the
theorem. Once again induction saves the day! �

This allows us to conclude our main theorem of the section.

Theorem 3.3. Let P• be a complex as in theorem (3.1). Then, for t ∈ Z,
we have

H−t (P
∗• ) ∼= Extd(Ht−d(P•), A) ∼= Ht−d(P•)∨.

In particular, Hr (P∗• ) ∈ A and hence, Chb
A(P(A)) is closed under duality.

Proof. Consider the dual complex: · · · P∗
t−1

(∂t )
∗→ P∗

t
(∂t+1)

∗
→ P∗

t+1 · · · . Note
that (∂t+1)

∗ : P∗
t → P∗

t+1 factors through

P∗
t → B∗

t ↪→
(

Pt+1

Bt+1

)∗
↪→ P∗

t+1
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(recall d ≥ 2) and hence, ker((∂t+1)
∗) = ker(P∗

t → B∗
t ) = ( Pt

Bt

)∗. Similarly,

ker((∂t)
∗) = ( Pt−1

Bt−1

)∗ and hence we obtain the exact sequence

0 →
(

Pt−1

Bt−1

)∗
→ (Pt−1)

∗ →
(

Pt

Bt

)∗
→ H−t (P

∗• ) → 0.

Note also that there is an exact Ext-sequence

0 →
(

Pt−1

Bt−1

)∗
→ (Pt−1)

∗ → (Bt−1)
∗ → Ext1

(
Pt−1

Bt−1
, A

)
→ 0.

But since d ≥ 2, we have

0 ��
(

Pt−1
Bt−1

)∗ �� (Pt−1
)∗ �� (Bt−1)

∗

�
��

�� Ext1
(

Pt−1
Bt−1

, A
)

�
���
�
�

�� 0

0 ��
(

Pt−1
Bt−1

)∗ �� (Pt−1
)∗ ��

(
Pt
Bt

)∗ �� H−t (P∗• ) �� 0

Hence, by (3.1), we get that H−t (P∗• ) ∼= Extd(Ht−d(P•), A). The rest follows
from (2.5). �

Remark 3.4. It is a straightforward diagram check that all the isomorphisms
in (3.1) and (3.3) are natural. In particular, that means that if we have a

morphism of complexes P•
f→ Q•, then there is a commutative diagram:

H−t (Q∗•)
H−t ( f ∗)

∼ ��

�
��

H−t (P∗• )

�
��

Ht−d (Q•)∨
Ht−d ( f )∨

∼ �� Ht−d (P•)∨

Finally, as an easy consequence of the above theorem, we obtain (for free!)
that Db

A(A) is closed under duality M∨ = Extd(M, A).

Theorem 3.5. The category Chb
A(A) is closed under the duality ∨ induced

by the duality ∨ in A.

Proof. Suppose M• is a complex in Chb
A(A). Without loss of generality,

we assume M• is supported on [n, 0]. Each component Mi has a projective
resolution of length d , and putting them together with the induced maps, we
get a double complex L••, as in the left figure below:
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Dualizing, L ′•• gives a similar resolution of M∨• , as shown on the right above
(note that there are sign conventions on the differentials of the complexes here,
in particular M∨• acquires a (−1)d factor on its differentials. We refer to [W]
for the conventions for total complexes.)

Now, the total complexes give quasi-isomorphisms

T ot(L••) −→ M•, T ot(L ′••) � M∨• .

So, Hi (T ot(L••)) ∈ A for all i ∈ Z. By (3.3), Hi (T ot(L∗••)) ∈ A for
all i ∈ Z. Now after translating T ot(L••)∗ d components to the left, we
observe that it is actually chain homotopy equivalent to T ot(L ′••) and so we
have Hi (T ot(L ′••)) ∈ A. Finally, the above quasi-isomorphism yields that

Hi (M∨• )
∼−→ Hi (T ot(L ′••)) ∈ A. This completes the proof. The proof is

complete. �

4. Definitions of Witt groups

In this section, we define Witt groups of the categories we work with.
In particular, we extend the definition of Witt groups from triangulated
categories with duality to their additive subcategories which are closed under
orthogonal sums, translations and isomorphisms. Since it is possible that
there is cause for confusion about translation, we start by clearing the air.

Definition 4.1. In all the categories of complexes, there are two possible
translations, Tu and Ts . The complex Tu P• is defined as (Tu P•)i = Pi−1 and
∂(Tu P•)i = ∂(P•)i−1. The complex Ts P• is defined as (Ts P•)i = Pi−1 and
∂(Ts P•)i = −∂(P•)i−1.

Note that Ts seems to be the “standard” translation in literature and
that is always the translation we use on any category of complexes.

However, given a duality ∗ on such a category (e.g. Db
A(A) and

Db
A(P(A))), there are shifted dualities, T n

s ◦∗ and T n
u ◦∗. We work with

the unsigned duality T n
u ◦∗ until we reach section 6. Note however that

Hi (T n
s P∗• ) = Hi (T n

u P∗• ) and so much of what we will say is independent of
the chosen duality.

Remark 4.2. We quickly review the situation for the categories A and R.
First note that both of these categories are exact categories with duality and
so the Witt groups are defined as in [QSS].

The functor ι induces duality preserving equivalences

ι : (A,∨ , �̃ ) −→ (R(A), T d
u ◦∗,�), ι : (A,∨ ,−�̃ ) −→ (R(A), T d

u ◦∗,−�)
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of categories which then yield isomorphisms of the corresponding Witt groups

W (ι) : W (A,∨ , �̃ ) ∼−→ W (R(A), T d
u ◦∗,�),

W (ι) : W (A,∨ ,−�̃ ) ∼−→ W (R(A), T d
u ◦∗,−�)

Finally, we get to our definitions of the Witt group. Given an exact
category E , its derived category will be denoted by Db(E). For a subcategory
C, Db

C(E) will denote the full subcategory of Db(E) consisting of complexes
with homologies in C.

The derived categories which will be used in this article include:

Db
A(P(A)) ⊆ Db

f l(P(A)) ⊆ Db(P(A)) Db
A(A) ⊆ Db(A).

We have the following diagram of subcategories and functors:

A
ι

��

μ ��

ζ

������������� Db
A (A) �

� ν ��

α

��

Db (A)
β

��
R(A) � � μ′

�� Db
A (P(A)) �

� ν ′
�� Db

f l (P(A)) .
(5)

Here μ(M) is the complex concentrated at degree zero. The functor ι(M)
is obtained by making a choice of projective resolution of length d and
then defining M∨ = H0((ζ(M))∗). The functors α and β are essentially
induced by these ones, by taking the total complex (take a look at the
proof of (3.5)).

We now move on towards the definitions of the Witt groups of the
categories Db

A(A) and Db
A(P(A)). We once again remind the reader that this

definition relies on the definitions in [B2].

Definition 4.3. Let δ = ±1. Suppose K := (K , #, δ,�) is a triangulated
category with translation T and δ-duality #. Suppose K0 is a full subcategory
of K that is closed under isomorphism, translation and orthogonal sum.
We abuse notation and denote K0 := (K0, #, δ,�) in order to keep track of
the duality and canonical isomorphism in use.

1. Define the Witt monoid of MW (K0) to be the submonoid

MW (K0) = {(P, ϕ) ∈ MW (K ) : P ∈ Ob(K0)}.
2. A symmetric space (P, ϕ) ∈ MW (K0) will be called a neutral space

in MW (K0) if it has a Lagrangian (L , α, w) in MW (K ) such that
L , L# ∈ Ob(K0).

3. Let N W (K0) be the submonoid of MW (K0) generated by the isometry
classes of neutral spaces in K0.
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4. Define the Witt group

W (K0) := MW (K0)

N W (K0)
.

Note (Q, χ) ∈ MW (K0) �⇒ (Q,−χ) ∈ MW (K0). It is easy to check
that (Q, χ) ⊥ (Q,−χ) ∈ N W (K0). So, W (K0) has a group structure.
We use this definition in the context of derived categories of exact
categories with duality.

5. Let (C,∨ ,�) be an exact subcategory with duality in an ambient abelian
category C′ and let D be any subcategory of C′ closed under orthogonal
sum. Let K0 = Db

D(C) (2.1). Then with the induced duality and natural
isomorphism, the Witt group W (Db

D(C),∨ , δ,�) is defined as above.
6. Accordingly, with T = Tu, Ts , the Witt groups

W (Db
A(P(A)), T n◦∗,±1,±�), W (Db

A(A), T n◦∗,±1,±�̃)
are defined.

5. Isomorphisms of Witt groups

All the functors above induce homomorphisms of Witt groups. As always,
A denotes a Cohen-Macaulay ring with dim Am = d ≥ 2, for all maximal
ideals m of A. Let Db

A(A,∨ ,±�̃ ), Db(A,∨ ,±�̃ ) denote the duality
structure, respectively, on Db

A(A) and Db(A) induced by (A,∨ ,±�̃ ) and

Db
A(P(A))±u := (Db

A(P(A)), T d
u ◦∗, 1,±�).

Recall the functors in the diagram (5), it is clear that the functors μ, ν, μ′
and γ preserve dualities. For ι, this is left to the reader as a diagram chase
(but note the definition of M∨ after that same diagram). Essentially the same
proof also gives us that ζ, α and β are duality preserving. This being done,
we can talk about the corresponding maps of the Witt groups. The goal of
this section is to establish the following diagram of homomorphisms of Witt
groups:

W
(A,∨ ,±�̃ )

∼
W (ζ )

����������������

W (ι) �
��

∼
W (μ) �� W

(
Db
A

(A,∨ ,±�̃ ))
∼

W (ν) ��

�W (α)

��

W
(

Db (A,∨ ,±�̃ ))

W
(
R(A), T d

u ∗,±�
)

∼
W (γ ) �� W

(
Db
A (P(A))±u

)
(6)

Note that we already know that W (ι) is an isomorphism (4.2) and further,
by [B3, Theorem 4.3], W (ν ◦ μ) is an isomorphism. The proof that

W (μ) : W (A,∨ ,±�̃ ) −→ W (Db
A(A,∨ ,±�̃ ))
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are isomorphisms follows from more abstract “general nonsense” which we
prove in (A.1) as part of the appendix (A). Since W (ν ◦ μ) and W (μ) are
isomorphisms, it is clear that so is W (ν). The main result of this section is
that W (ζ ) is an isomorphism. That being established, it is clear that W (γ )

and W (α) are isomorphisms.
For the rest of this section, we use the notation # := T d

u ◦∗. First,
we establish the following regarding the structure of symmetric forms.

Lemma 5.1. Suppose η : X•
∼−→ X#• is a symmetric form in (Db

A(P(A))±u ),
such that

H−m(X•) 
= 0, and Hi (X•) = 0 for all i < −m.

Then, there is a complex P• in Chb
A(P(A)) and a quasi-isomorphism

ϕ : P• → P#• such that

1. (P•, ϕ) is isometric to (X•, η) in (Db
A(P(A))±u ).

2. P• is supported on [m + d,−m].
3. H−m(P•) 
= 0.

Proof. Recall from (2.9) that since H−m(X•) 
= 0, X• has length at least d .
By duality, we conclude that m ≥ 0. By definition there is a complex
P• of projective modules and a quasi-isomorphism t : P• −→ X•, a
chain complex morphism ϕ0 : P• −→ X#• such that η = ϕ0t−1. Then,
ϕ = t#ϕ0 = t#ηt is a symmetric form on P•, and (X•, η) is isometric to
(P•, ϕ). By including enough zeros on the two tails, we can assume P• is
supported on [n + d,−n], for some n ≥ m. If m = n there is nothing
to prove. So, assume n > m. We have, H−n(P•) = 0. Inductively, we will cut
down the support to [m + d,m]. We write ϕ : P• −→ P#• as follows

where Pi are finitely generated projective A-modules. Since n > m,
H−n(P•) ∼= H−n(P∗• ) ∼= 0. So, ∂−(n−1) and ∂∗

n+d are both split surjections.
Thus there are homomorphisms ε−n : P−n −→ P−(n−1) and ε∗n+d :
Pn+d∗ −→ Pn−1+d such that ∂−(n−1) ◦ ε−n = I d and ∂∗

n+d ◦ ε∗n+d = I d .

Hence, Z−(n−1) and Pn−1+d
Pn+d

are projective modules. Note that since d ≥ 2, by

(2.9), Pn−1+d
Pn+d

= Bn−2+d . Further, we obtain splittings σ−(n−1) : P−(n−1) �
Z−(n−1) and σ(n−2)+d : B(n−2)+d ↪→ P(n−1)+d . This gives us a shorter
complex Q•, naturally chain homotopic to P• and an induced symmetric
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form on Q•:

Calling this map ϕ′, (Q•, ϕ′) is obviously isometric to (P•, ϕ) and hence to
the original form (X•, η). Since Q• is supported on [(n − 1)+ d,−(n − 1)]
induction finishes the proof. �

Since ζ is given by composing ν and α and there are maps W (ν) and W (α),
it is clear that W (ζ ) is well-defined. However, we give an explicit proof which
might also be somewhat illuminating considering the unsaid details about why
duality-preserving functors induce maps of Witt groups. The proof essentially
follows the proof in [B1, 2.11].

Theorem 5.2. The functor ζ induces a well defined homomorphism

W (ζ ) : W (A,∨ ,±�̃ ) −→ W ((Db
A(P(A))±u )).

Proof. We will only prove

W (ζ ) : W (A,∨ , �̃ ) −→ W (Db
A(A)+u ).

is well defined and the case of skew dualities follows similarly. It is clear that
ζ defines a well-defined map from MW (A,∨ , �̃ ) to MW (Db

A(A)+u ) since
projective maps of modules can be lifted to a chain complex map of their
resolutions (note that though the lift is not unique, it is unique upto homotopy
and so gives the same morphism in Db

A(P(A))). So we need to check that the
image of a neutral space in MW (A,∨ , �̃ ) is neutral in MW (Db

A(A)+u ).
Suppose (M, ϕ0) is a neutral space in (A,∨ , �̃ ). Let α0 : N −→ M be a

lagrangian of (M, ϕ0). Then

0 �� N
α0 �� M

α∨
0 ϕ0 �� N∨ �� 0 is exact.

Suppose L•, P• are the chosen projective resolutions of N and M and
α : L• → P• is the morphism induced from α0. The above short exact

sequence implies the composition L•
α→ P•

α#ϕ→ L#• is chain homotopic to 0
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(hence the 0 map in Db
A(P(A))). Completing α to an exact triangle, we get a

morphism of exact triangles

L•
α ��

��

P•
j ��

α#ϕ
��

C•
k ��

s
���
�
� T (L•)

��
0 �� L#• L#• �� 0

Note that H0(C•) ∼= N∨ and ∀ i 
= 0 Hi (C•) = 0 and so C• is an
object in Db

A(P(A)). The map s is actually quite easy to describe, namely
s = (0, α#ϕ) : Ln−1 ⊕ Pn −→ L∗

n and it follows from the above morphism
of triangles (or by direct checking) that s is a quasi-isomorphism. Hence,

L•
α �� P•

α#ϕ �� L#•
k◦s−1

�� T (L•)

is an exact triangle. Setting w = −T −1(k ◦ s−1), we get an exact triangle

T −1(L#•)
w �� L• α �� P•

α#ϕ �� L#•

Now all we require is that T −1w# = w.

T −1w# =w⇔T −1w# =−T −1(k ◦ s−1)⇔ (T −1(k ◦ s−1))# =k ◦ s−1

⇔ T (s−1# ◦ k#) = k ◦ s−1 ⇔ T (k#) ◦ s = T (s#) ◦ k.

A quick physical check of the maps in question yields that the first map is

while the second one is

The matrices we thus obtain are
(

0 −ϕ∗
n−1 ◦ αd−n+1

0 0

) (
0 0

α∗
d−n ◦ ϕn 0

)

which are homotopy equivalent using

τ =
(

0 0
0 (−1)nϕ

)
.

Therefore, (L•, α, w) is a lagrangian. Hence W (ζ ) is a well defined
homomorphism of groups. �
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We now proceed towards (5.11) which proves that W (ζ ) is surjective. The
main tool here is to construct a special sublagrangian and then use Balmer’s
sublagrangian construction [B2, Section 4 and Theorem 4.20] to reduce the
length of (P, ϕ).

Remark 5.3. Note that using (5.1), any symmetric form (X•, φ) in(
Db
A (A)+u

)
with X• not acyclic can be represented by

with H−n(P•) 
= 0.

Lemma 5.4. Let (P•, ϕ) be as above. Then

1. Hr (P•) = 0 for r = n + 1, n + 2, . . . , n + d.
2. Hn(P•) 
= 0.

Proof. The first point follows from (2.9). To prove (2), assume Hn(P•) = 0.
Then, with Bn−1 = image(∂n) we have an exact sequence

0 �� Pn+d �� P(n−1)+d �� · · · �� Pn �� Pn−1 �� Pn−1
Bn−1

�� 0

Since this is a projective resolution of the last term, if follows

H−n(P
∗• ) = Extd+1

(
Pn−1

Bn−1
, A

)
= 0.

This is a contradiction to H−n(P•) 
= 0. The proof is complete. �

Much of what follows is dependent on [B2, §4] and the interested reader
is highly encouraged to take a look at it. We recall the definition of a
sublagrangian of (P•, ϕ):

Definition 5.5. A sublagrangian of a symmetric form (P•, ϕ) is a pair
(L•, α) with L• ∈ Ob(Db

A(P(A))) and α : L• → P•, which satisfies that
α#◦ϕ◦α = 0 in Db

A(P(A)).

For (P•, ϕ) as above, (5.4) tells us that Hn(P•) 
= 0 and we already know
it is in A. So it has a minimal projective resolution of length d . Let L•
be a projective resolution of Hn(P•) of length d , shifted by n places, as in
the diagram below. Since Hi (P•) ∀ i > n by (2.9), the bottom line is a
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projective resolution of Pn
Bn

and so the inclusion Hn(P•) ↪→ Pn
Bn

induces a map
of complexes

0 �� Ln+d ��

νn+d

��

L(n−1)+d

ν(n−1)+d

��

�� · · · �� Ln

νn

��

���� 0

0 �� Pn+d �� P(n−1)+d �� · · · �� Pn �� 0.

Note that since the composition Hn(P•) ↪→ Pn
Bn

� Bn−1 is 0, we get a chain
complex morphism ν : L• −→ P•.

Lemma 5.6. With the notations as above, for n > 0, (L•, ν) defines a
sublagrangian of (P•, ϕ).

Proof. Let α = ν#ϕν is as follows (the first line indicates the degrees):

L# is exact at all degrees except −n. Since n > 0, Hi (L#) = 0∀i ≥ n. Hence,
image(αn) ⊆ ker(∂∗

d−n+1) = image(∂∗
d−n). So, αn lifts to a homomorphism

hn : Ln −→ L∗
d−(n+1), i.e. ∂d−n

∗hn = αn . So ∂d−n
∗(αn+1 − hn∂n+1) = 0.

Now we can inductively define a homotopy hr : Lr −→ L∗
d−(r+1) so that α

is homotopic to zero. The proof is complete. �

We intend to apply the sulagrangian construction of Balmer [B2,
Theorem 4.20] to ν. Since Db

A(P(A)) is not a triangulated category
(in particular not closed under cones), we need to reprove some of the
results in [B2, Theorem 4.20]. The main (and only) thing we have to keep
track of is that in all the constructions, our objects remain within the category
Db
A(P(A)). We start by checking that the cone of ν constructed in (5.6) is an

object of Db
A(P(A)).

Lemma 5.7. With the notations of (5.6), let N• be the cone of ν. Then,

1. N• is in Db
A(P(A)).

2. The homologies are given by

hi (N•) =
{

Hi (P•) if n > i ≥ −n

0 otherwise
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3. N• is supported on [n + d + 1,−n].

Proof. The last point is obvious from the construction of the cone and (1)
follows from (2). We prove (2). We have the exact triangle

T −1N• �� L•
ν �� P• �� N•.

By construction, Hn(L•)
∼−→ Hn(P•) and Hi (L•) = 0 for all i 
= n. The

long exact sequence of homologies

establishes (2) and hence the lemma. �

Now we consider the dual N#• of the cone of ν.

Lemma 5.8. With the same notations as above (in (5.6)), consider the
following morphism of exact triangles:

T −1 N•
ν0 ��

T −1μ0
��

L• ν ��

μ0

��

P•
ν2 ��

ϕ

��

N•
μ#

0
��

T −1L#• T −1ν#
0

�� N#•
ν#

2

�� P#•
ν#

�� L#•

(refer [B2, 4.3]. . . the existence of μ0 is assured by combining axioms (TR1)
and (TR3) of triangulated categories and using that 2 is invertible.) Then,

1. N#• is in Db
A(P(A)).

2. N#• is supported on [n + d,−(n + 1)].
3. μ0 induces an isomorphism of the nth-homology

H(μ0) : Hn(L•)
∼−→ Hn(N

#• ).

4.

Hi (N
#• ) ∼=

{
Hi (P#• ) if n ≥ i > −n

0 otherwise
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Proof. (1) follows directly from (3.1). (2) follows because by (5.7) N• is
supported on [(n+1)+d,−n]. For (3), notice that the only nonzero homology
of L#• is at degree −n. Since n > 0, the long exact homology sequence of the
second triangle gives us

H(ν#
2) : Hn(N

#• )
∼−→ Hn(P

#• ).

By choice of ν and ϕ, we know that

H(ν) : Hn(L•)
∼−→ Hn(P•), H(ϕ) : Hn(P•)

∼−→ Hn(P
#• )

and hence, the commutative diagram

Hn(L•)
Hn(ν)

∼ ��

Hn(μ0)
��

Hn(P•)

Hn(ϕ)�
��

Hn(N#• )
Hn(ν

#
2 )

∼ �� Hn(P#• )

gives us (3). We prove (4) now. Since the only nonzero homology of L#• is at
degree −n, it is clear from the long exact homology sequence for the bottom
exact triangle that

Hi (N
#• ) ∼= Hi (P

#• ) ∀ i 
= −n,−n − 1.

By (5.7), Hi (N•) = 0 for all i ≥ n and so

H−(n+1)(N
#• ) = Extd+2

(
Nn−1

Bn−1
, A

)
= 0, H−n(N

#• ) = Extd+1
(

Nn−1

Bn−1
, A

)
= 0.

where Bn−1 ⊆ Nn−1 is the boundary submodule (the last part also follows
directly because Extd( Pn

Bn
, A) ∼= Extd(Hn(P•), A)). So, (4) is established.The

proof is complete. �

Now we consider the cone of μ0.

Lemma 5.9. With the notations in (5.6), (5.7) and (5.8), consider an exact
triangle on μ0 as follows:

L•
μ0 �� N#•

μ1 �� R•
μ2 �� T (L•)

where R• is the cone of μ0. Then R• is an object of Db
A(P(A)). More

precisely,

Hi (R•) =
{

Hi (N#• ) for − (n − 1) ≤ i ≤ n − 1

0 otherwise.

which tells us that R• has exactly two nonzero homologies less than than P•.
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Proof. Note that the only nonzero homology of L• is at degree n. Using (5.8),
the long exact homology sequence corresponding to the exact triangle is as
follows:

· · · Hn+2(R•) �� 0 �� 0 �� Hn+1(R•) �� Hn(L•)
∼ �� Hn(N#• ) ��

Hn(R•) �� 0 �� Hn−1(N
#• ) �� Hn−1(R•) �� 0 �� · · · · · · ��

0 �� H−n+1(N
#• ) �� H−n+1(R•) �� 0 �� 0 �� H−n(R•) �� 0 · · ·

Therefore,

Hi (R•) =
{

Hi (N#• ) for − (n − 1) ≤ i ≤ n − 1

0 otherwise.

The proof is complete. �

Remark 5.10. The readers are referred to [B2, 4.11] for the definition of a
very good morphism L• −→ N#• . All we need in the sequel is that such
morphisms exist [B2, 4.17] and that whenever they do, we obtain [B2, 4.20]

1. There is a symmetric form ψ : R•
∼−→ R#• .

2. There is a lagrangian

N#• −→ (P#• , ϕ−1) ⊥ (R•, ψ).

Theorem 5.11. Let (P•, ϕ) be a symmetric form as in (5.3) with n > 0.
Then, there is a symmetric form (Q•, τ ) such that

1.

[(Q•, τ )] = [(P•, ϕ)] in W (Db
A(P(A))±u ).

2. Q• has two less homologies than P• and it has support in [k + d,−k] for
some 0 ≤ k < n.

Proof. Use the notations in (5.6), (5.7) and (5.8). Using the above remark
(5.10), let μ0 be a very good morphism and let (R•, ψ) be the symmetric
form obtained. Note that N#• , R• are objects in Db

MF P D f l (P(A)) by (5.7)
and (5.9). Hence, by (2) of the above remark (5.10), (R•, ψ) is Witt
equivalent to (P#• ,−ϕ−1) in (Db

A(P(A))±u ) by definition (4.3). Therefore in
W (Db

AP(A))±u ), we have

[(R•, ψ)] = [(P•#,−ϕ−1)] = [(P•,−ϕ)] in W (Db
A(P(A))±u ).
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Now, Hi (R•) = 0 if i < −(n − 1), i > (n − 1). By (5.1), (R•,−ψ) is
isometric to a form (Q•, τ ) such that Q• is supported on [k + d,−k] with
0 ≤ k ≤ n − 1. The proof is complete. �

Now we are ready to state and prove the main result of this article, which
is our version of the dévissage theorem, i.e.

Theorem 5.12. The homomorphisms

W (ζ ) : W (A,∨ ,±�̃ ) −→ W ((Db
A(P(A))±u ))

induced by the functor ζ are isomorphisms.

Proof. First, we prove the surjectivity of the homomorphism W (ζ ). Suppose
x ∈ W ((Db

A(P(A))±u )). Then, by (5.1), we can write x = [(P•, ϕ)] of the
form described in (5.3). Inductively, by (5.11), there is a form (R•, ψ) in
(Db

A(P(A))±u ) such that

[(R•, ψ)] = [(P•, ϕ)] = x in W ((Db
A(P(A))±u ))

and R• is supported in [d, 0]. By (2.9), R• is a projective resolution of
M := H0(R•) ∈ A. Further, ψ induces a form ψ0 : M

∼−→ M∨ and clearly

W (ζ )([(M, ψ0)]) = [(R•, ψ)] = x .

So, W (ζ ) is surjective.
Now, we proceed to prove that W (ζ ) is injective. Suppose (M, q)

is a symmetric form in (A,∨ ,±�̃ ) and W (ζ )([(M, q)]) = 0. Write,
(ζ(M), ζ(q)) = (P•, ϕ0) where P• is a projective resolution of M of
length d , and ϕ0 is the induced symmetric form. So, [(P•, ϕ0)] = 0 in
W ((Db

A(P(A))±u )).
This means there is a neutral form [(Q•, ϕ1)] so that [(P•, ϕ0)] ⊥

[(Q•, ϕ1)] is neutral in W ((Db
A(P(A))±u )). Since [(Q•, ϕ1)] is neutral, so

is [(Q•,−ϕ1)]. Hence, [(P•, ϕ0)] ⊥ [(Q•, ϕ1)] ⊥ [(Q•,−ϕ1)] is neutral.
Using the usual isometry, we get that there is a hyperbolic form

(
Q• ⊕ Q#•,

(
0 1

1 0

))
with Q• ∈ Db

A((P(A))

such that

(U•, ϕ) :=
⎛

⎜⎝P• ⊕ Q• ⊕ Q#•,

⎛

⎜⎝
ϕ0 0 0

0 0 1

0 1 0

⎞

⎟⎠

⎞

⎟⎠

is neutral in W ((Db
A(P(A))±u ))
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(we have so far followed the argument in [B2, 3.5]).
So, (U•, ϕ) has a lagrangian (L•, α). We have an exact triangle

T −1L#•
w �� L• α �� U•

α#ϕ �� L#• T −1w# = w.

Before proceeding, we use (3.3) to make a startlingly simple observation
about the homologies of L#• :

Hi (L
#•) ∼= Hi−d (L

∗•) ∼= Extd (H(d−i)−d (L•), A) ∼= Extd (H−i (L•), A) ∼= H−i (L•)∨.

Similarly, Hi (U #• ) ∼= H−i (U•)∨ and further using the remark (3.4) about
naturality of the maps, we get that the long exact homology sequences are

Replacing the part of the top exact sequence in negative degree by the
corresponding part of the bottom (dual) exact sequence, we get an exact
sequence:

Notice that the complex above is very special, and is “symmetric” about
H0(U•). So we can apply [B3, 4.1 Lemma] to this sequence. Since the
sequence is exact, we have

[(H0(U•), H0(ϕ))] = [(0, 0)] = 0 in W (MF P D f l(A)).
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However,

(H0(U•), H0(ϕ)) =
⎛
⎜⎝H0(P•)⊕ H0(Q•)⊕ H0(Q

#•),

⎛
⎜⎝

H0(ϕ0) 0 0

0 0 1

0 1 0

⎞
⎟⎠

⎞
⎟⎠

= (M, q) ⊥
(

H0(Q•)⊕ H0(Q•)∨,
(

0 1

1 0

))

So, we have

[(M, q)] =
[
(M, q) ⊥

(
H0(Q•)⊕ H0(Q•)∨,

(
0 1

1 0

))]

= [(H0(U•), H0(ϕ))] = 0.

The proof is complete. �

6. Shifted Witt groups

In this section, we use the previous results to obtain our dévissage theorem for
the Witt groups W i (Db

A(P(A))). We recall that A is a Cohen-Macauly ring
with dim Am = d ≥ 2 for all maximal ideals m and such that 2 is invertible
in A and that A = MF P D f l(A).

Notations 6.1. For integers j ≥ 0 define the functor ζ j = T − j◦ζ , which
associates to an object M in A a projective resolution P• of M of length d ,
such that H− j (P•) = M .

Definition 6.2. Suppose K := (K , #, δ,�) is a triangulated category with
translation T and δ-duality #. We recall from [B3] that

T n K :=
(

K , T n◦#, (−1)nδ), (−1)
n(n+1)

2 δn�
)
.

is then also a triangulated category with the same translation T but with
((−1)nδ)-duality T n◦#. If K0 is a subcategory of K satisfying the conditions
of (4.3), we define T n K0 to be the same subcategory and translation with the
induced duality structure from T n K . Using (4.3), we define the shifted Witt
groups by

W n(K ) := W (T n K ) W n(K0) := W (T n K0) ∀ n ∈ Z.

Note that T 2
s : T n K −→ T n+4K is an equivalence of triangulated

categories with duality, for all n ∈ Z. Similarly, T 2
s : T n K0 −→ T n+4K0 is

an equivalence of categories with duality, for all n ∈ Z and so

W n(K )
∼−→ W n+4(K ) W n(K0)

∼−→ (T n K0) ∀ n ∈ Z.
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Definition 6.3. Following [BW], by “standard” duality structure on A,

we mean the exact category
(
A,∨ , (−1)

d(d−1)
2 �̃

)
. By “standard” skew

duality structure on A, we mean the exact category
(
A,∨ ,−(−1)

d(d−1)
2 �̃

)
.

We denote the Witt groups

W+
St (A) = W

(
A,∨ , (−1)

d(d−1)
2 �̃

)
, W−

St (A) = W
(
A,∨ ,−(−1)

d(d−1)
2 �̃

)
.

Theorem 6.4. Then, the functor ζ0 : A −→ Db
A(P(A)) induces an

isomorphism

W (ζ0) : W+
St (A)

∼−→ W d(Db
A(P(A)), ∗, 1,�).

Proof. Recall ζ0 was denoted by ζ in the previous sections. For notational

convenience �0 = (−1)
(d(d−1)

2 � . By theorem (5.12), we get the following
isomorphism of Witt groups

η0 : W+
St (A)

∼−→ W (Db
A(P(A)), #u

d , 1,�0).

There is a duality preserving equivalence [BW, Proof of Lemma 6.4]

β : (Db(P(A)), T d
u ◦∗, 1, �0) −→

(
Db(P(A)), T d

u ◦∗, (−1)d , (−1)
d(d+1)

2 �
)
.

Note that the later is the shifted category T d(Db(P(A)), ∗, 1,�). Composing
η0 with the homomorphism induced by β, we get the result. �

Now we prove the standard skew duality version of theorem (6.4).

Theorem 6.5. The functor ζ1 induces an isomorphism

W−
St (A)

∼−→ W d−2(Db
A(P(A)), ∗, 1,−�).

Proof. By Theorem (5.12), we have an isomophism

W−
St (A)

∼−→ W
(

Db
A(P(A)), T d

u ◦∗, 1,−(−1)
d(d−1)

2 �
)
.

Write �0 = −(−1)
d(d−1)

2 � . There is an equivalence of categories [B2, 2.14]

Ts : (Db
A(P(A)), T d−2

u ◦∗, 1,�0) −→ (Db
A(P(A)), T d

u ◦∗, 1,�0).

This induces an isomorphism

W (Db
A(P(A)), T d−2

u ◦∗, 1,�0)
∼−→ W (Db

A(P(A)), T d
u ◦∗, 1,�0).

As in the proof of [BW, Lemma 6.4], there is an equivalence of triangulated
categories with duality

(Db(P(A)), T d−2
u ◦∗, 1,�0) −→ (Db(P(A)), T d−2

s ◦∗, (−1)d−2, (−1)
d(d+1)

2 �).

The latter category is T d−2(Db(P(A)), ∗, 1,−�). The proof is
complete. �
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Finally, we have the following regarding odd shifts.

Theorem 6.6. For n = d − 1, d − 3, we have

W n(Db
A(P(A)), ∗, 1,±�) = 0.

Proof. First consider n = d − 1. It would be enough to prove that

W (Db
A(P(A)), T d−1

u ◦∗, 1,±�) = 0.

Suppose (P•, ϕ) is a form in Db
A(P(A), T d−1

u ◦∗, 1,±�). By a little tweak
in (5.1), we can assume that P• is supported on [n + (d − 1),−n] with
n > 0 and H−n(P•) 
= 0. By imitating the arguments of theorem (5.11), we
can keep shortening the length of the complexes which give our symmetric
form. Eventually, we will be reduced to the case where the complex is P• is
supported on [d − 1, 0]. By theorem (2.9), P• is exact. So, [(P, ϕ)] = 0. The
same arguments apply when n = d − 3. The proof is complete. �

Using the 4-periodicity, we now obtain the theorem mentioned in the
introduction:

Theorem 6.7 (shiftFinal). Let B = (Db
A(P(A)), Ts ,

∗ , 1,�). Then, for
n ∈ Z, we have

1. W d+4n(B) = W+
s (A),

2. W d+4n+1(B) = 0,

3. W d+4n+2(B) = W−
s (A),

4. W d+4n+3(B) = 0.

A. Some formalism

The purpose of this section is to prove the following theorem:

Theorem A.1. Suppose E is a full subcategory of a Z
[ 1

2

]
abelian category

B with the 2 out of 3 property for short exact sequences, and has duality
(E,∨ , �̃ ). Let Db(E) := (Db(E), ∗, a,�) denote the derived category,
with duality, of (E,∨ , �̃ ). Also, let Db

E(E) denote the derived category, with
duality, of objects in Db(E) with homologies in E . Then the homomorphism

W (μ) : W (E,∨ , �̃ ) −→ W (Db
E (E))

induced by the functor μ : E −→ Db
E(E) is an isomorphism.

In particular, with E = A and B = M(A), we obtain that

W (μ) : W (A,∨ ,±�̃ ) −→ W (Db
A(A,∨ ,±�̃ ))

as promised in section 5.
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The proof of the theorem is essentially the same as the proof of
[B3, Theorem 3.2] with the extra check that all constructions yield complexes
whose homologies are in A. This boils down to using the most elementary of
sublagrangians (concentrated in just one degree) and reducing length. In any
case, we follow the proof in [B3, Theorem 3.2]. Since the category E has all
the properties required in the results in [B3, Section 3]), we will freely borrow
them.

To start with, injectivity of W (μ) follows directly because the isomorphism
W (E) ∼−→ W (Db(E)) (proven in [B3, Theorem 4.3]) factors as

W (E) W (μ) ��

∼
����������������� W (Db

E(E))

����
W (Db(E))

We move to the proof of surjectivity which, as we mentioned above will
require checking that we remain in Db

E(E) through all the lemmas establishing
[B3, Theorem 3.2]. To start with, we establish the following result regarding
duality, which also provides an alternative proof of (3.5).

Lemma A.2. With the same notations as in (A.1), Db
E(E) is closed under

duality.

Proof. Let P• be an object in the derived category Db
E(E). Write

P• : · · · �� P2
d2 �� P1

d1 �� P0 �� P−1 �� P−2 �� · · ·

P∗• : · · · �� P∨−2
�� P∨−1

�� P∨
0

�� P∨
1

�� P∨
2

�� · · ·

Since the complexes are bounded and the homologies are objects of E , all the
kernels Zi = ker(di), images Bi = image(di+1) and quotients Pi

Bi
are also

objects of E . Hence, so are their duals. But we have an exact sequence

0 ��
(

Pt−1
Bt−1

)∨
�� P∨

t−1
��
(

Pt
Bt

)∨
�� Ht (P∗• ) �� 0

The first three terms in this sequence are in E , hence so is H0(P∗• ). The proof
is complete. �

Lemma A.3. Let x ∈ W (Db
E(E)). Then x = (P•, s) such that

1. P• is bounded and s : P• −→ P∗• is a morphism of complexes, without
denominator.
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2. s is quasi-isomorphism.
3. s is strongly symmetric (i.e s∨−i = si ∀i ∈ Z).
4. Hi (P•) ∈ E for all i ∈ Z.

Proof. Let the form x be given by (X•, η). By definition there is a complex
P• which is an object of Db

E(E) and a chain complex quasi-isomorphisms
t : P• −→ X• and ϕ0 : P• −→ X∗• such that η = ϕ0t−1. Then, s = t∗
ϕ0 = t∗ηt is a symmetric form on P• and (X•, η) is isometric to (P•, ϕ).
Clearly s is an actual morphism of complexes, a quasi-isomorphism and
Hi (P•) ∈ E for all i ∈ Z. Finally, using that 1

2 exists, we can make the map
strongly symmetric. �

Lemma A.4. Let (P•, s) be a symmetric form in Db
E(E) as in (A.3), such

that P• is supported on [m,−n] with m > n ≥ 0. Then (P•, s) is isometric to
a symmetric space (Q•, t) such that Q• is supported on [n,−n] and (Q•, t)
has all the other properties of (P•, s).

Proof. This is precisely [B3, Lemma 3.7] in our context. Note that since
we can do this in the derived category without the homology condition
Db(E), we use the same result to get (Q•, t) isometric to (P•, s) with
the required condition. However, since the isometry gives in particular a
quasi-isomorphism P•

∼−→ Q• and so Q• is also an object in Db
E(E).

The proof is complete. �

Lemma A.5. Let (P•, s) be a symmetric space, as in (A.3). with support on
[−n, n] and n > 0. Then there exists a symmetric space (Q•, t) such that

1. (Q•, t) is as in (A.3).
2. (Q•, t) is supported in [n,−(n − 1)].
3. Hi (Q•) ∈ E for all i ∈ Z.
4. [(P•, s)] + [(Q•, t)] = 0 in W (Db

E(E)).

Proof. Once again this is [B3, Lemma 3.9] in our context. We skim through
the proof mentioning only the significant points and most important, checking
the points where we need to check the extra homology condition. We begin
by proving the lemma in the case n ≥ 2. Write

P• =
s

��

· · · 0 �� Pn

s
��

d �� Pn−1
d ��

s
��

· · · d �� P−n

s
��

�� 0

P∗• = · · · 0 �� P∨−n d∨
�� P∨−(n−1) d∨

�� · · · �� P∨
n

�� 0
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Define (Q•, t) as follows, on the left side:

It was proved in [B3, Lemma 3.9] that t is a quasi-isomorphism. So, it follows

Hn(Q•) ∼= 0, Hn−1(Q•) ∼= Hn−1(Q
∗•) ∼= ker(d∨) ∈ E .

Since image(0, dn−1) = image(dn−1) we have

Hi (Q•) = Hi (P•) ∈ E ∀ i ≤ n − 2.

Therefore

Hi (Q•) ∈ E for all i ∈ Z.

So Q• satisfies the last condition of (A.3). The other conditions of (A.3) are
shown to be established in [B3, Lemma 3.9].

Therefore, Q• satisfies (A.3). It was established in [B3] that (P•, s) ⊥
(Q•, t) is neutral in Db(E), by showing that (P•, s) ⊥ (Q•, t) is isometric
(in Db(E)) to the cone of the morphism z : T −1 M∗• −→ M• defined as
follows:

Since all the boundaries and cycles of P• and P∗• are objects of E , so are
Hi (M•) and Hi (M•)∗. Therefore,M• and M∗• are objects of Db

E(E).
Let Z• = cone(z). In [B3, Lemma 3.9], it is further shown that there is a

symmetric form χ : Z• −→ Z∗• and that (Z•, χ) is isometric to (P•, s) ⊥
(Q•, t) in Db(E). But this tells us that Hi (Z•) ∼= Hi (P•)⊕ Hi (Q•) and hence
Z• is an object of Db

E(E).
Now again following the proof of [B3, Lemma 3.9], it is shown that

T −1z# = z in Db
E(E) and that the form χ actually fits in to make M• a

lagrangian for (Z•, χ). Hence, this proves the lemma when n ≥ 2.
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In the case n = 1, (P•, s) is given by

P• =
s

��

0 �� P1

s
��

�� P0

s
��

�� P−1 ��

s
��

0

P∗• = 0 �� P∨
−1

�� P∨
0

�� P∨
1

�� 0

Define (Q•, s) as follows

The degree zero term is in the middle. In [B3, Lemma 3.9], it is established
that t is a quasi-isomorphism. It follows that Hi (Q•) = 0 for all i 
= 0 and

H0(Q•) = P∨−1 ⊕ P0

P1
∈ E .

So, Q• satisfies all the condition in (A.3), because the remaining three
conditions are established in [B3, Lemma 3.9]. Now (P, s) ⊥ (Q, t) has a
lagrangian, namely

T −1 M∗• =
z

��

0 �� P1
−d ��

0
��

P0 ��

sd
��

0

M• = 0 �� P∨
0 d∨

�� P∨
1

�� 0

degree = 1

���
�
�

0

���
�
�

−1

���
�
�

Again,

H0(M•) = ker(d∨), H1(M•) = coker(d∨) are in E .
So, M• and hence M•∗ are objects of Db

E(E). The rest of the proof is exactly
the same as in the case n ≥ 2. The proof is complete. �

Finishing the prof of (A.1): We use (A.3) to represent any element x
in W (Db

A(A)) by a chain complex in Db
A(A) and a strongly symmetric
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quasi-isomorphism to its dual. Then, by alternate use of lemma (A.4) and
(A.5), we reduce any element in W (Db

E (E)) to a chain complex in Db
E(E)),

concentrated at degree zero. Of course that means the quasi-iromorphism is
actually an isomorphism and hence x is the image of an element in W (A)
via W (μ). So W (μ) is also surjective. So, the proof of theorem (A.1) is
complete. �
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