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1. Introduction

This is the first one of a number of articles ([MS,M1,M2]) dedicated
to extending the theory of derived Witt groups, due to Paul Balmer, to
non-regular schemes. We restrict ourselves to the derived categories of
complexes, whose homologies have finite projective dimension.
This introduction also serves as a prelude to the same for all the articles in
this series.

In this article, we develop some background for this series, including
a definition of Witt groups of full subcategories of triangulated categories
with duality, and a version of the dévissage theorem [BW, Theorem 6.1] for
Witt groups of Cohen-Macaulay rings. To introduce this theorem, let A be a
commutative Noetherian domain of dimension d with 2 invertible and K be
its quotient field. It is a classical question (known as purity) as to when the
map W(A) — W(K) is injective. Purity is a conjecture when A is a regular
local ring and is affirmatively settled in ([CS,OP,0OPSS]).

In general, we can extend the above map to the right for any regular
scheme by considering the Gersten-Witt complex. Let X = Spec(A) be of

Partially supported by a General Research Grant from KU.

157



158 Satya Mandal and Sarang Sane

dimension d with 2 invertible and X ™ denote the points of codimension #.
A Gersten-Witt complex

0> W@)—> P Wkx)—> P Wkx) - > @ Wkx)—0

xeX© xex(® xex@

was first constructed by Pardon [Pal]. He further conjectured the exactness of
this sequence for regular local rings and affirmatively settled it in many cases.

Subsequently, with the introduction of triangular Witt groups by Balmer
[B1,B2,B3], Witt groups could be viewed as a cohomology theory. Using this,
another Gersten-Witt complex could be defined (though both complexes look
similar, it seems unproven that the differentials match) [BW], similar to the
one in K-theory. Once again it is an open question as to when the complex is
exact. In particular, it is conjectured to be so when X = Spec(A) where A is a
regular, local ring and this is affirmatively settled in ([B4,Pal,Pa2,B4,BGPW]).
[B1,B2,B3,BW] form the basic backbone of the methodologies in this article
and we would like to remark that the interested reader would be well advised
to take a look at them. For any unexplained notations and definitions in the
introduction, please refer to (2.1).

The key result which allows one to move from derived Witt groups to
the Gersten-Witt complex is dévissage [BW, Section 6] which states that
for a regular, local ring (A, m, k), of dimension d, we have W" (D’}Z(A)) =
W (k) if n = d mod 4 and W" (DI)’CZ (A)) = 0 otherwise. We describe below
the generalized form of this theorem for a Cohen-Macaulay ring A with
dim A, = d for all maximal ideals m and 2 invertible.

Suppose A is a Cohen-Macaulay ring with dim A = d. Since there are
modules of infinite projective dimension over such a ring and of finite length,
the usual duality Ext?( _, A) does not work well. The options are either to
change the duality (w.r.t. the canonical module) but then use the category
of all modules (coherent Witt groups) or impose finite projective dimension
homology conditions on the complexes. The first path is taken and deeply
studied in Pardon [Pa2,Pa3] and more recently in Gille [G1,G2], where they
also establish a Gersten-Witt complex of coherent Witt groups.

In this article, we take the second approach. Let M FPD(A) be the
category of finitely generated A-modules with finite projective dimension,
MFL(A) be the category of finitely generated A-modules with finite
length, and A = MF P Dy;(A) be the full subcategory of finitely generated
A-modules with finite projective dimension and finite length (the
“intersection”). Note then that .4 is an exact category and has a natural duality
given by M +— Exti (M, A) and so we can consider the Witt group W (A).
By Balmer [B2], we already know that W (A) = W9 (D" (A)).

We consider the category DZ(A) with homologies in .A. Based on the
fact that A actually has the 2-out-of-3 property for objects, we prove that the
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duality actually restricts to DZ(A) and this allows a suitable definition of Witt

groups W' (DZ(A)). Once defined, we prove that the above isomorphism

actually factors through isomorphisms W (A) = wd (DZ(A)) AN
W?(DP(A)).

We now consider the category DZ(P(A)). Similar to DZ(A), we
establish that this category is stable under duality and define the Witt groups
Wi (Df’él(.A)). Having done so, we prove our version of dévissage (5.12,6.7):

W(A) — w4 (DY (P(A)))
W (A) — Wit2(DY(P(A)))
WL (DY (P(4))) = wiH(DL(P(A))) = 0.

Note that when A is regular, this is exactly the same theorem as that in
[BW]. Further, in the Gorenstein case, there is a natural commuting square
involving the above dévissage statement and the dévissage statement in [G1],
for coherent Witt groups. As of now, we do not know if these sets of groups
coincide or not, which would also be a subject of future investigations.
However, we point out that there are more forms and neutral spaces in the
realm of coherent Witt theory. Since we prove the theorem without regularity
assumptions or the existence of a natural dualizing complex, we do not have
access to the equivalences of the derived categories with duality as in [BW]
or [G1] (in particular we cannot use the powerful lemma of Keller [K, §1.5,
Lemma and Example(b)]). Our proof is thus necessarily more elementary
and naive than the one in [BW]. One of the key ingredients in the proof
is the construction of a special sublagrangian (5.6) for symmetric forms in
(DY(P(A)).

In deed, the methods in this paper have much wider applications and set
the tone of arguments used in the rest of the articles in this series (loc. cit).
A key to these methods is to use the sublagrangian theorem of Balmer ([B3]),
to construct symmetric forms of complexes, Witt equivalent to a given form,
with shorter length. Methods also provide further insight into nonsingular
varieties ([M1]). Our interest in these studies stems from the introduction
of the Chow-Witt groups CH' (A) for 0 < r < d, due to Barge and Morel
[BM] and developed by Fasel [F1], as the obstruction groups for splitting
of projective modules, which works best for nonsingular varieties. This
also serves as a motivation for our interest in maintaining the category of
projective modules in our statement of dévissage. Jean Fasel informs that, for
singular varieties X, Chow-Witt groups CH' (X) and obstruction classes can
be defined in the same manner, using coherent Witt groups. However, it is not
known whether vanishing of the obstruction classes would lead to splitting.
We feel that, for the purpose of developing an obstruction theory for singular
varieties, it would be more natural to consider some analogue of the derived
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Witt groups of the category of projective modules. This approach would be
of its own independent interest for both computations and applications.

We make a few comments about the layout of the article. The article
was written with the readership in mind and provides some extra details.
In section 2, we establish the basic definitions and a key result on projective
dimensions. In the section 3, we establish the important theorem that the
categories DZ(P(A)) and DZ(A) are closed under duality, and more
specifically how the homologies of the dual look like. Once this is established,
in section 4, we define the Witt groups of the above categories and expectedly,
they are 4-periodic, i.e. W" (D% (P(A))) —> W"+4(D(P(A))). Finally, in
sections 5 and 6, we prove our main theorems about dévissage.
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2. Basic notations and preliminaries

Notations 2.1. Throughout this article, A will denote a Cohen-Macaulay
ring with dim A,, = d > 2, for all maximal ideals m of A. Further, 2 is
always invertible in A. We set up the notations:

1. M(A): category of finitely generated A-modules.

2. MF PD(A): full subcategory of finitely generated A-modules with finite
projective dimension.

3. MFL(A): category of finitely generated A-modules with finite length.

4. A = MFPDy(A): category of finitely generated A-modules with finite
length and finite projective dimension.

5. P(A): category of finitely generated projective A-modules.

6. For any exact category C, Ch?(C) is the category of bounded chain
complexes with objects in C, and D?(C) is its derived category.

7. For any two exact categories C, D in an ambient abelian category C’,
C h”D(C) is the full subcategory of Ch?(C) consisting of complexes with
homologies in D. DbD(C) is its derived category, which is also the full
subcategory of D?(C) consisting of objects from C hbD(C).

8. R: full subcategory of DZ(P(A)) consisting of objects P, such that
P, =0fori >d,i <0and H;(P,) =0foralli # 0and Hy(P,) € A.

9. For objects M in A, let MV = Ext‘f‘(M, A)and @ : M —> M"Y be the
identification by double ext. (but we make this more precise in diagram
((5)) and the explanation of z.)



On Dévissage for Witt groups 161

10. We will denote complexes P, by:

am
) Pm Pm—l ...... _>Pn—>o

11. A non-zero complex P, is said to be supported on [m, n] if P; = 0 for all
i <nandi > m.
12. For a complex P, of projective A-modules P; will denote the usual dual

induced by Hom (x, A) and w : P, —> P* will denote the identification
by evaluation. Note that the degree r-component of the dual P} is (P_,)*.

13. The length of a non-zero complex P, is defined as (P,) = u — [ where
P, #0,P #0and P, =0foralli </andi > u.

14. Let B, = B, (P,) := 0y+1(Pr+1) € P, denote the module of r-boundaries
and Z, = Z,(P,) := ker(6,) € P, denote the module of r-cycles (or the
r' syzygy).

15. The r!"-homology of P, will be denoted by H, = H,(P,) := g—:.

ker(d* ,
So, the rM-homology of the dual is H, (P}) = %((E:))'

16. A full exact subcategory C of an abelian category D is said to have the
2-out-of-3 property if for every short exact sequence in D, whenever two
of the objects are objects of C, then so is the third.

Remark 2.2. The subcategory MFPD(A) and A are both exact sub-
categories and in fact have the 2-out-of-3 property. The category R is also
an exact category. Although it is a subcategory of DZ(P(A)), it has no
translation and is actually naturally equivalent to the category A. The natural
functor 7 : R — A is given by sending a complex Q, to Hy(Q,). The inverse
functor 7 is given by associating to objects M € A a projective resolution of
length d.

Note further that when A is not regular, the categories DZ(P(A)) and
D?v( FPD(A) (P(A)) are not closed under the cone operation as the following
example demonstrates.

Example 2.3. Let (A,m) be a non-regular Cohen-Macauly ring with

dimA = d, such that m = (f1, f>,..., f4,z). We can assume, using
prime avoidance, that fi, f2,..., fy is a regular sequence. Let U, =
Kose(f1, f2,..., fa) be the Koszul complex. Since the only nonzero
homology of U, is Ho(U,) = m e A, U, and all its translates

are objects of both the categories above. Let C(z) denote the cone of the the
chain complex map z : U, —> U,. From the long exact homology sequence
corresponding to the short exact sequence of chain complexes

0 Us C(z) Us[l] —=0
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it follows that
A .z A )
—
(f1, for - fa) (f1, foo s fa)

So, C(z) is not an object in DZ(P(A).

12
3>
.
™

Hy(Cone(z)) = coker (

Next, we ask if Chl/j\/t rpp(P(A)) is closed under duality. We thank Sankar
Dutta for providing the following example:

Example 2.4 (Dutta). Let (A, m, k) be any non-regular Cohen-Macaulay
local ring, with dim A = d. Let

3
Py —% Py Po k 0

be a projective resolution of k. Let * denote Hom(—,A) and
M = cokernel(0}). Since Ext"(k, A) = 0 for all 0 < r < d, the sequence

0 Py o Pi-y Fj M 0

is a projective resolution of M. Dualizing this sequence, it follows that
Ext‘j\(M, A) = k, which does not have finite projective dimension.
In particular, Chlj’w rpp(P(A)) is not closed under duality.

Note however that in the above example, M does not have finite length.
Indeed, we will prove in section 3 that the category C hi’4(77(A)) is closed
under duality.

We mention a few standard results for the sake of completeness.

Lemma 2.5. Let (A,m) be a Cohen-Macaulay local ring with
dimA =d. Let M € MFL(A). Then Further, Ext (M, A) =0 forall i < d.
and Ext*(M, A) # 0 is also in MFL(A). Note further that if M € A, then
so is Ext*(M, A).

Lemma 2.6. Ler A be a Cohen-Macaulay ring withdim A = d. Let M € A.
There is a natural isomorphism

w:M— M.
Corollary 2.7. (A,Y, &) are exact categories with duality.

Proposition 2.8. Let A be Cohen-Macaulay with d = dim Ay, > 2 for all
maximal ideals m. Let Py be a complex in Ch®(P(A)). Assume that all the
homologies H, := H,(P,) € A. Then we claim:

1. The modules B, and Z, have finite projective dimension Yr. In that case,
proj dim(Z,) = proj dim(B,_) — 1.
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2. Forallr € Z, we have projdim B, <d — 1 and so projdimZ, <d —2.
3. If H # 0 then projdim B, =d — 1.

Proof. Note that P, is a bounded complex and so let it be supported on [m, n].
Then Z,, = P, and so has finite projective dimension. Since there are short
exact sequences:

00— B, —Z,— H —0 0—->Z%2,— P — B,_1 =0,

it is clear that if Z, is of finite projective dimension, then so are B, and Z, 1,
and hence the proof follows by induction. The second part of (1) also follows
from the above exact sequence.

Since B, is torsion free, it has depth at least 1 and hence, by the
Auslander-Buchsbaum theorem, projdim(B,) < d — 1. So, projdim(Z,) <
d — 2. S0, (2) is established.

Now, assume H, # 0. Choose a maximal ideal m in the support of H,.
Then, consider the localized short exact sequence

0— (B))m — (Zr)m — (Hy)m — 0.
Then, we get a long exact sequence of Toru,, (_, A/m), which gives us that

Tor§  ((Hp)m, A/m)= Tory '(B)m,A/m) and Tor§ ((Br)m.A/m)=0,

since we have already proved that proj dimyg Z, < d — 2. Thus we obtain
proj dimy, (B;)m = d — 1. Since we know that proj dima (B,) < d — 1, this
implies proj dim4 (B,) = d — 1. This establishes (3). O

The complexes in Ch?(P(A)) with finite length homologies have at least
d nonzero components at the left where the homology is 0. This proposition
plays a key role in sections 5 and 6.

Proposition 2.9. Let A be Cohen-Macaulay with d = dim Ay, for all
maximal ideals m. Let P, be a bounded complex of projective modules, such
that H; = O Vi > n and H, # 0 is of finite length. Then P; # O0,n <i <
n+d.

Proof. Since H; = 0 Vi > n and the complex is bounded, we get that %
is of finite projective dimension, since the components with indices > n give
a resolution. Now, let m be a maximal ideal in the support of H,(P,), then

(H,(Ps))m C gg:’l;: is of finite length, and hence Eg’lﬁ has depth 0. By the

Auslander-Buchsbaum theorem, projdimy (8;2%:) = d. But that means

proj dim 4 (g—’;) = d. Hence, the resolution of % given by the components
of P, with indices > n must have length at least d. Hence, P; # 0,n <i <
n + d. The proof is complete. O
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3. Duality

As always, A will denote a Cohen-Macaulay ring with dimA,, =d > 2,
for all maximal ideals m and A = MF P D;(A). In this section, we prove
that the category Chz(P(A)) is closed under duality and give a precise
description of the homologies of the dual.

Theorem 3.1.  Suppose P, is a complex in Ch?(P(A)) with homologies
in A. Then we have:

. Ext*(Hyyi—a—-1,A) l1<i<d-2
Exi(Z,, A) = xt® (Hy i d-1),4) —.l = (1)
fori>d—1
, Ext'(Hryi—a-1,A) 1<i<d-—1
Ext (B, A) =1 (Hrti-@-v, 4) == )
0 fori>d
Br O lZd

Proof. Since P; = 0Vi « 0, the theorem is true for r < 0. So, we assume
that the theorem is true for » — 1 and prove it for r.

Corresponding to the short exact sequence 0 - Z, — P, — B,_1 — 0,
we get a long exact Ext-sequence which yields

0 — Ext*(B,_1, A) — P* — Ext®(Z,, A) — Ext'(B,_1, A) > 0 (4)

and for i > 1 we have Ext'(Z,, A) = Ext'T1(B,_1, A). Thus, the induction
hypothesis yields that for i > 1,

' : Ext!(Hryi—@-1),A) 1<i<d-2
EXIZ(Zr,A)=Extl+l(Br_l’A)={ A ( r+i—(d-1) ) <1l =<

fori>d—1
So, equation (1) is established.

Consider the long exact Ext-sequence corresponding to the short exact
sequence 0 - B, — Z, — H, — 0.By (2.5), Ext'(H,, A) = Oforalli # d
and since Ext' (Z,, A) =0 Vi > d — 2 from equation (1), it follows that
Ext'(Z,,A), 0<i<d-2
Ext (B, A) = { Ext/(H,,A), i=d—1
0, i>d

[Ex°(Z,, A), i=0
VExt!(Hoyi—@-1), A), 1<i<d—1
0, i>d

1
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Now consider the short exact sequence 0 — H, — g% — B,_; — 0.

Again, Ext'(H,,A) = 0V i # d from (2.5) and from equation (2) we get
Ext'(B,, A) =0Vi > d — 1. So it follows that
[Ext(B,_1,4), 0<i<d—1
(P
Ext' (B— A) Ext?(H,,A), i=d
r

_O> i >d

1

[Exi(B,_1,4), i=
Ext'(Hyti—a, A), 1<i<d
0, i>d

12

a

Corollary 3.2. Suppose P, is a complex in Ch®(P(A)) with homologies
in A. Then, forallr € Z

, . (P
Ext' (B, A), Ext'(Z.,A), Ext (B—’,A)

r

are in Afori > 1 and are in MFPD(A) fori = 0.

Proof. By (2.5) and the preceding theorem (3.1), for i > 1, the statement
is clear. For i = 0, we recall below equation (4) from the preceding
proof:

0 — Ext*(B,_1, A) — P* — Ext°(Z,, A) — Ext'(B,_, A) — 0.

and that we also proved Ex®(B,, A) = Ext°(Z,, A) and Exto(%, A) =
Ext%(B,_1, A). Hence, it is enough to know that Ext%(B,_1, A) satisfies the

theorem. Once again induction saves the day! O
This allows us to conclude our main theorem of the section.

Theorem 3.3. Let P, be a complex as in theorem (3.1). Then, fort € 7,
we have
H_((P}) = Ext'(H;—a(P.), A) = Hi—a(P.)".

In particular, H,(P}) € A and hence, C hil(P(A)) is closed under duality.

@)* @+

Proof. Consider the dual complex: --- P* | = PF — - Note
that (6;+1)* : P;* — P}, factors through
P k
Pz*_>Bt*c_>( tH) = P,
t+1
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(recall d > 2) and hence, ker ((6,+1)*) = ker(P} — B}) = (g)*. Similarly,

ker((6;)*) = (gi j )* and hence we obtain the exact sequence

Pt—l ¥ * P[ * *
0— 2 — (P—1)* — 5 — H_;(P]) — 0.

t—1 t

Note also that there is an exact Ext-sequence

Pt—l * * * 1 P[—l

t—1 t—1
But since d > 2, we have

k
L) ()" —— (B —— Ext! (7=, 4) ——0

|
H 4 K
A

o (1) (i () )

0— (5=

Hence, by (3.1), we get that H_; (P}) = Ext? (Hy—q(Py), A). The rest follows
from (2.5). O

Remark 3.4. Itis a straightforward diagram check that all the isomorphisms
in (3.1) and (3.3) are natural. In particular, that means that if we have a

morphism of complexes P, —f> 0., then there is a commutative diagram:

H_((f")

H_1(Q%) — H_(P})
| |
Hy_q(Q4)Y H_d”( oS Hi—_q(Ps)"

Finally, as an easy consequence of the above theorem, we obtain (for free!)
that DZ(A) is closed under duality MV = Ext?(M, A).

Theorem 3.5. The category C hi’4(A) is closed under the duality ¥ induced
by the duality ¥ in A.

Proof. Suppose M, is a complex in Ch’;l(A). Without loss of generality,
we assume M, is supported on [#n, 0]. Each component M; has a projective
resolution of length d, and putting them together with the induced maps, we
get a double complex L,,, as in the left figure below:

0! — e —  —3 1 —0 00—y —  — et ———  — 5 1 —— 0
Lee = 03 Lin > Lyn_1)»-+-2L11>L1030 Lgg= 03L{y 130> Lfi_1y1 + > L{g_1y(n=1) * L{g—1yn *0
0> Lop + Lo(p—1) »*++ > Lo1 > Log + 0 00— Lgo —— Ly —>++r—> L3y —> Lg, —0

Me= 03Mp —>Mp 1 —eee>Mi3Mop+0 M= 0— My —MY —eee— MY | —— M) —0
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Dualizing, L/, gives a similar resolution of M/, as shown on the right above
(note that there are sign conventions on the differentials of the complexes here,
in particular M) acquires a (—1)¢ factor on its differentials. We refer to [W]
for the conventions for total complexes.)

Now, the total complexes give quasi-isomorphisms

Tot(Lee) — Mo, Tot(L.,) - M, .

So, Hi(Tot(Les)) € A for all i € Z. By (3.3), Hi(Tot(L%,)) € A for
all i € Z. Now after translating Tot(Lee)™ d components to the left, we
observe that it is actually chain homotopy equivalent to Tot(L/,) and so we
have H;(Tot(L,,)) € \A. Finally, the above quasi-isomorphism yields that
H;(M)) —> H;(Tot(L.,)) € A. This completes the proof. The proof is
complete. O

4. Definitions of Witt groups

In this section, we define Witt groups of the categories we work with.
In particular, we extend the definition of Witt groups from triangulated
categories with duality to their additive subcategories which are closed under
orthogonal sums, translations and isomorphisms. Since it is possible that
there is cause for confusion about translation, we start by clearing the air.

Definition 4.1. In all the categories of complexes, there are two possible
translations, 7, and Ts. The complex T, P, is defined as (T, P,); = P;_1 and
O(Ty Ps)i = 0(P,)i—1. The complex T P, is defined as (75 P,); = P;_1 and
6(TsPo)i = _a(Po)i—l-

Note that 7, seems to be the ‘“‘standard’ translation in literature and
that is always the translation we use on any category of complexes.

However, given a duality * on such a category (e.g. Df’4(.,4) and
DZ(P(A))), there are shifted dualities, 7,'ox and T,ox. We work with
the unsigned duality 7o until we reach section 6. Note however that
H; (T P}) = H;(T) P}) and so much of what we will say is independent of
the chosen duality.

Remark 4.2. We quickly review the situation for the categories A and R.
First note that both of these categories are exact categories with duality and

so the Witt groups are defined as in [QSS].
The functor 7 induces duality preserving equivalences

(ALY, @) — (RA), Tox, @), 1:(AY,—@) — (R(A), Tdox, —r)
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of categories which then yield isomorphisms of the corresponding Witt groups
W@): WA, &) — W(R(A), T ox, ),
W) : WA, —@) — W(R(A), Tdox, —w)

Finally, we get to our definitions of the Witt group. Given an exact
category &, its derived category will be denoted by D”(&). For a subcategory
C, Dg (€) will denote the full subcategory of D”(E) consisting of complexes
with homologies in C.

The derived categories which will be used in this article include:

D%(P(4)) € D4(P(A)) € DP(P(4))  D%(A) € D"(A).

We have the following diagram of subcategories and functors:

A~ Db (A Db (4)

N

R(A)—> D (P(A) " DY, (P(4)).

Here (M) is the complex concentrated at degree zero. The functor 1(M)
is obtained by making a choice of projective resolution of length d and
then defining MY = Ho((¢(M))*). The functors o and f are essentially
induced by these ones, by taking the total complex (take a look at the
proof of (3.5)).

We now move on towards the definitions of the Witt groups of the
categories DZ(A) and Di(P (A)). We once again remind the reader that this
definition relies on the definitions in [B2].

Definition 4.3. Let 6 = £1. Suppose K := (K, #, J, w) is a triangulated
category with translation 7" and J-duality #. Suppose Kj is a full subcategory
of K that is closed under isomorphism, translation and orthogonal sum.
We abuse notation and denote Ko := (Ko, #, J, w) in order to keep track of
the duality and canonical isomorphism in use.

1. Define the Witt monoid of MW (Kj) to be the submonoid
MW (Ko) = {(P,p) € MW(K) : P € Ob(Kp)}.

2. A symmetric space (P, p) € MW(Kp) will be called a neutral space
in MW (Kp) if it has a Lagrangian (L, a, w) in MW (K) such that
L,L* € Ob(Ky).

3. Let NW(Kp) be the submonoid of MW (Kj) generated by the isometry
classes of neutral spaces in Kj.
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4. Define the Witt group

MW (Ko)
NW(Ko)

Note (Q, y) € MW(Ko) = (Q, —x) € MW(Kp). It is easy to check
that (Q, y) L (Q,—yx) € NW(Kp). So, W(Kp) has a group structure.
We use this definition in the context of derived categories of exact
categories with duality.

5. Let (C,”, @) be an exact subcategory with duality in an ambient abelian
category C’ and let D be any subcategory of C’ closed under orthogonal
sum. Let Kg = DbD(C) (2.1). Then with the induced duality and natural
isomorphism, the Witt group W(D% (©),Y, 8, w) is defined as above.

6. Accordingly, with T = T, T, the Witt groups

W(Kop) :=

W(DY(P(A)), T"ox, 1, @), W(DY(A), T"ox, £1, +@)

are defined.

5. Isomorphisms of Witt groups

All the functors above induce homomorphisms of Witt groups. As always,
A denotes a Cohen-Macaulay ring with dim A,, = d > 2, for all maximal
ideals m of A. Let DY(A,Y,+@), D(A,Y,+@) denote the duality
structure, respectively, on DZ(A) and D”(A) induced by (A," , £@) and

DY (P(A)E == (DY (P(A)), T ox, 1, £w).

Recall the functors in the diagram (5), it is clear that the functors u, v, u’
and y preserve dualities. For 1, this is left to the reader as a diagram chase
(but note the definition of M" after that same diagram). Essentially the same
proof also gives us that ¢, & and f are duality preserving. This being done,
we can talk about the corresponding maps of the Witt groups. The goal of
this section is to establish the following diagram of homomorphisms of Witt
groups:

W (n) W)

w (Df4 (.A,V,j:u"f)) —w (Db (.A,V,j:u"f))
Wmlz N W(a)le (6)

w (’R(A), T4, :I:w) Wi—y)> % (Df4 (P(A))j[)

W (AY, to)

Note that we already know that W (z) is an isomorphism (4.2) and further,
by [B3, Theorem 4.3], W(v o u) is an isomorphism. The proof that

W(w) : WA, £@) — W(DY(A,Y, £&))
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are isomorphisms follows from more abstract “general nonsense” which we
prove in (A.1) as part of the appendix (A). Since W(v o u) and W(u) are
isomorphisms, it is clear that so is W(v). The main result of this section is
that W(¢) is an isomorphism. That being established, it is clear that W(y)
and W(a) are isomorphisms.

For the rest of this section, we use the notation # := Tud o*. First,
we establish the following regarding the structure of symmetric forms.

Lemma 5.1.  Suppose n: Xo —> X is a symmetric form in (DZ(P(A))Mi),
such that

H_,,(X,) #0, and H;j(Xe)=0 for all i <—m.

Then, there is a complex P, in Chf’4(77(A)) and a quasi-isomorphism
@ : Py — Pf such that

1. (P, @) is isometric to (X,, 1) in (DZ(P(A))?‘E).
2. P, is supported on [m + d, —m)].
3. H_,,(P,) #0.

Proof. Recall from (2.9) that since H_,,(X,) # 0, X, has length at least d.
By duality, we conclude that m > 0. By definition there is a complex
P, of projective modules and a quasi-isomorphism ¢ : P, —> X,, a
chain complex morphism ¢g : Py —> Xf such that # = ¢@ot~!. Then,
9o = t*9pq = "yt is a symmetric form on P,, and (X,, ) is isometric to
(P,, ). By including enough zeros on the two tails, we can assume P, is
supported on [n + d, —n], for some n > m. If m = n there is nothing
to prove. So, assume n > m. We have, H_, (P,) = 0. Inductively, we will cut
down the support to [m + d, m]. We write ¢ : P, —> P¥ as follows

Ontd O(n—1)+4d O_(n—2 0_(n-1)
0 Pn+d P(n—1)+d —_— s —> }3_(“_1) P_y 0
O (n-2)
0 P* .. P* 0

P*
—(n—1) (n—1)+d g = Tntd
n

9 oy . Nn—1)+d
where P; are finitely generated projective A-modules. Since n > m,
H_,(P,) = H ,(P}) = 0.8So, 0_(,—1) and é’:er are both split surjections.
Thus there are homomorphisms €, : P, — P_;,—1) and ej:er

Pyyq¥ —> Py_14q such that 6_¢,_1) o €, = Id and 6;1"+d o e;l"+d = Id.

Hence, Z_(,—1) and P”T:;d are projective modules. Note that since d > 2, by
(2.9), [33;—:" = By,—2+4. Further, we obtain splittings o_¢,—1) : P_—1) —
Z_(—1y and 6(—2)+d : Bu-2)+a <> Pu-1)+a- This gives us a shorter
complex Q,, naturally chain homotopic to P, and an induced symmetric
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form on Q,:
8
Qi —>0—>0—>Bn 314> Pnz)4a > Z (1) —>0—>0—
O(n—2)+d
K 3n+ﬁ, 2 8 El
P. N — 0 — P"+d — (n—1)+d — P(n—2)+d e —> P—(n—l) —_— P_" — 0 —>
@ Pntd P(n—1)+d P(n—2)+d $—(n-1) p—n

P¥: —~0—>P*, _—>P" R P ,—0—

* %
nor o Py 3:7:5 “n-2 " 5 Fla-na 57 Pav
Ola—2)+d
# .
QT —>0—>0—>Zi(n_1)—>Pj(n_2)---?B{n_2)+d—>0—>0—>

Calling this map ¢’, (Q., ¢’) is obviously isometric to (P,, ¢) and hence to
the original form (X,, 7). Since Q, is supported on [(n — 1) +d, —(n — 1)]
induction finishes the proof. O

Since ¢ is given by composing v and a and there are maps W (v) and W (a),
it is clear that W (¢) is well-defined. However, we give an explicit proof which
might also be somewhat illuminating considering the unsaid details about why
duality-preserving functors induce maps of Witt groups. The proof essentially
follows the proof in [B1, 2.11].

Theorem 5.2. The functor ¢ induces a well defined homomorphism
W) : WAY, £&) — W(DL(PAN)).
Proof. We will only prove
W) : WA, &) — WDLAD).

is well defined and the case of skew dualities follows similarly. It is clear that
¢ defines a well-defined map from MW (A," , @) to MW (D% (A);") since
projective maps of modules can be lifted to a chain complex map of their
resolutions (note that though the lift is not unique, it is unique upto homotopy
and so gives the same morphism in DZ(P(A))). So we need to check that the
image of a neutral space in MW (A," , @) is neutral in M W(DZ(.A),J[).

Suppose (M, @) is a neutral space in (A,",@). Letag: N —> M bea
lagrangian of (M, ¢g). Then

v
) g 90

0 N M NV 0 1is exact.

Suppose L,, P, are the chosen projective resolutions of N and M and
o : Le — P, is the morphism induced from ag. The above short exact

#
sequence implies the composition L, 5 p, g Lf is chain homotopic to 0
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(hence the 0 map in DZ(P (A))). Completing « to an exact triangle, we get a
morphism of exact triangles

Lo ¢ Po ! CO d T(LO)

[l

) —

Note that Ho(C) = NVandV i #0 H;(C,) = 0and so C, is an
object in D A(P(A)) The map s is actually quite easy to describe, namely
s =(0,a (p) L,—1 ® P, — L} and it follows from the above morphism
of triangles (or by direct checking) that s is a quasi-isomorphism. Hence,

#
a
P,

-1
L. Lf kos T(L.)

is an exact triangle. Setting w = —T ' (k o s™!), we get an exact triangle

a

T-(L%) “— L,
Now all we require is that 7w = w.
T 'w=we T W =—T kos e (T ' kos ) =kos!
T For)y=kos™ & Tk os = T(s") ok.
A quick physical check of the maps in question yields that the first map is

(icum)
Pp—1© Cla—n+1
Ln—l z - L;—n @ P;—n+1

(-1 0)

Ln—l @Pn

while the second one is

(0 afnopm) (_01)

Ln—l 2] Pn L;—n L;;—n D Pj—n+1

The matrices we thus obtain are

0 _(0::_1 O Od—n+1 0 0
0 0 ay_ oo, 0

which are homotopy equivalent using

T_(O 0 )
~\0 (=D )"

Therefore, (L,, @, w) is a lagrangian. Hence W(¢) is a well defined
homomorphism of groups. O
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We now proceed towards (5.11) which proves that W (¢) is surjective. The
main tool here is to construct a special sublagrangian and then use Balmer’s
sublagrangian construction [B2, Section 4 and Theorem 4.20] to reduce the
length of (P, ¢).

Remark 5.3. Note that using (5.1), any symmetric form (X,, ) in
(DY (A);F) with X, not acyclic can be represented by

P,=... ()_>pn+d_3>p(n_1)+d3_>..._a,p_(n_1)3_>p_n_>0
¢l ﬂonl ‘P(n—1)+dl ‘p—(n—l)l l‘ﬁ—n
P¥=--- 0_>Pin7pi(n—1)—>"'—33P(2—1)+d?P;+d_>0

with H_,(P.) # 0.

Lemma 5.4. Let (P,, ¢) be as above. Then
1. H(P) =0forr=n+1,n+2,...,n+d.
2. H,(P,) #0.

Proof. The first point follows from (2.9). To prove (2), assume H,(P,) = O.
Then, with B,_1 = image(d,) we have an exact sequence

0 Pyya P(n—l)+d Py Py g::: 0
Since this is a projective resolution of the last term, if follows
P,
H_p(PF) = Ext'! (—1 A) =0.
By
This is a contradiction to H_, (P,) #~ 0. The proof is complete. a

Much of what follows is dependent on [B2, §4] and the interested reader
is highly encouraged to take a look at it. We recall the definition of a
sublagrangian of (P,, ¢):

Definition 5.5. A sublagrangian of a symmetric form (Po,®) is a pair
(Lo, ) with Ly € Ob(Df’L‘(P(A))) and a. : Loy — P, which satisfies that
a*opoa = 0 in DY (P(A)).

For (P,, ) as above, (5.4) tells us that H,(P,) # 0 and we already know
it is in A. So it has a minimal projective resolution of length d. Let L,
be a projective resolution of H,(P,) of length d, shifted by n places, as in
the diagram below. Since H;(P,) Vi > n by (2.9), the bottom line is a
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projective resolution of % and so the inclusion H, (P,) — % induces a map
n n
of complexes

0——=Lytda —=Lu-1)1d e L, 0
Vn+dl V(n—l)+dl an
0—— Puya —— Pu—-1)+d e P, 0.

Note that since the composition H, (P,) <> B, B,_11s 0, we get a chain

By
complex morphism v : Ly — P,.

Lemma 5.6. With the notations as above, for n > 0, (L,,v) defines a
sublagrangian of (P, ¢).
Proof. Let a = v¥pu is as follows (the first line indicates the degrees):

n+1 n n—1 -n

S |

Ln+t2 Lnta Ly, 0 e 00— 0 ——

T ]

— L — L L L
d—(n+2) o%_ d—(n+1) %, d—n 83 i1 d—n+1 g

n—1

L* is exact at all degrees except —n. Since n > 0, H; (L*) = 0Vi > n. Hence,
image(on) < ker(0;_, . ) = image(8;_,). So, a, lifts to a homomorphism
h, : L, — L;_(n+l), ie. 04—n*hy = an. S0 O4—pn*(0n+1 — hpdpsr1) = O.
Now we can inductively define a homotopy %, : L, —> L} _ (r+1) SO that a
is homotopic to zero. The proof is complete.

We intend to apply the sulagrangian construction of Balmer [B2,
Theorem 4.20] to v. Since DZ(P(A)) is not a triangulated category
(in particular not closed under cones), we need to reprove some of the
results in [B2, Theorem 4.20]. The main (and only) thing we have to keep
track of is that in all the constructions, our objects remain within the category
DZ(P(A)). We start by checking that the cone of v constructed in (5.6) is an
object of DZ(P(A)).

Lemma 5.7. With the notations of (5.6), let Nq be the cone of v. Then,
1. N, is in DY (P(A)).

2. The homologies are given by

Hi(P) ifn>i=>—n

0 otherwise

hi(NO) = [
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3. N, is supported on [n +d + 1, —n].

Proof. The last point is obvious from the construction of the cone and (1)
follows from (2). We prove (2). We have the exact triangle

v

TN, L. P, N..

By construction, H, (L,) = H,(P,) and H;(L,) = O for all i # n. The
long exact sequence of homologies

~

<+ Hn2(Ne) 0 0 Hp41(Ne) —> Hrn(Ls) Hn(Ps)

Hy(No) ————> 0 ——> Hy_1(Po) —> Hy_1(Ne) 0 >
00— H_n(Ps) —> H_pn(Ns) 0 0 H_(ny1)(Na) —>0---
establishes (2) and hence the lemma. d

Now we consider the dual N¥ of the cone of v.

Lemma 5.8. With the same notations as above (in (5.6)), consider the
following morphism of exact triangles:

Vo V2

T-'N, L, P, N,
T_lﬂol uol fpl ugl
—1r# # # #

T 'L} = N, " P, 5 Ly

(refer [B2, 4.3]... the existence of uo is assured by combining axioms (TRI)
and (TR3) of triangulated categories and using that 2 is invertible.) Then,

1. N¥isin DY (P(A)).
2. N is supported on [n +d, —(n + 1)].
3. wo induces an isomorphism of the n'"-homology

H(uo) : Hy(Ly) —> Hy(N¥).

H;(N¥)

NE@EH ifn=i>-n
B otherwise
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Proof. (1) follows directly from (3.1). (2) follows because by (5.7) N, is
supported on [(n+1)+d, —n]. For (3), notice that the only nonzero homology
of Lf is at degree —n. Since n > 0, the long exact homology sequence of the
second triangle gives us

HOY) : Hy(N}) — H,(P}).
By choice of v and ¢, we know that
H®) : Hy(L)) — Hy(P.)), H(p) : Hy(P) — H,(P¥)

and hence, the commutative diagram

H,(v)
H,(L,) - H,(P,)
lHn(/‘O) ZlHn((/J)
Hn(V#)
H, (N L~ H,(P}

gives us (3). We prove (4) now. Since the only nonzero homology of Lf is at
degree —n, it is clear from the long exact homology sequence for the bottom
exact triangle that

Hi(NH = H{(PHVi £ —n,—n—1.
By (5.7), Hi(N,) = O for alli > n and so

N, _ N, _
H_ 41y (N) = Ext"+? (B—IA) =0, H_y(N}) = Ext't! (B—IA) =0.

n—1 n—1

where B,_1 € N,_1 is the boundary submodule (the last part also follows
directly because Ext?( %, A) = Ext*(H,(P,), A)). So, (4) is established. The
proof is complete. O

Now we consider the cone of yg.

Lemma 5.9. With the notations in (5.6), (5.7) and (5.8), consider an exact
triangle on uo as follows:

Ho # Ml H2

L, N,

R, T(L,)

where R, is the cone of uo. Then R, is an object of DQ(P(A)). More
precisely,
Hi(N}) for —(n—1)<i<n-—1
H,-(R.):[ i(N) for —(n—1) =i <

0 otherwise.

which tells us that Re has exactly two nonzero homologies less than than P,.
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Proof. Note that the only nonzero homology of L, is at degree n. Using (5.8),
the long exact homology sequence corresponding to the exact triangle is as
follows:

"'Hn+2(R0) 0 0 HrH»l (Re) —> Hyp(Le) é Hn(Nf) —_—
Hp(Re) 0 H,_|(N¥) ——= H,_1(Re) 0 — o e
0 ———> H_, 4| (N) —> H_p11(Re) 0 0 Hen(Re) —>0---

Therefore,

H;(N¥) for —(n—1)<i<n—1

Hi (Ro) = ¢ .

0 otherwise.

The proof is complete. O

Remark 5.10. The readers are referred to [B2, 4.11] for the definition of a
very good morphism L, —> N¥. All we need in the sequel is that such
morphisms exist [B2, 4.17] and that whenever they do, we obtain [B2, 4.20]

1. There is a symmetric form y : R, = Rf.
2. There is a lagrangian

N — (Pf 07" L (Ra, p).

Theorem 5.11. Let (P,, ) be a symmetric form as in (5.3) with n > Q.
Then, there is a symmetric form (Qa, T) such that

1.

[(Qe, D)1 = [(Ps, 0)] in W(DY(P(A)D).

2. Q, has two less homologies than P, and it has support in [k + d, —k] for
some 0 < k < n.

Proof. Use the notations in (5.6), (5.7) and (5.8). Using the above remark
(5.10), let uo be a very good morphism and let (R,, ) be the symmetric
form obtained. Note that N¥, R, are objects in D?v( rppr(P(A) by (5.7)
and (5.9). Hence, by (2) of the above remark (5.10), (R,, ) is Witt
equivalent to (P¥, —p~1) in (DY (P(A))¥) by definition (4.3). Therefore in
W(DZP(A))ZT), we have

[(Re, ¥)] = [(Po*, —p™ D] = [(P, —p)] in W(D5(P(A)D).
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Now, Hi(R,) = 0ifi < —(n — 1),i > (n — 1). By (5.1), (Rs, —W) is
isometric to a form (Q,, 7) such that Q, is supported on [k + d, —k] with
0 <k <n — 1. The proof is complete. a

Now we are ready to state and prove the main result of this article, which
is our version of the dévissage theorem, i.e.

Theorem 5.12. The homomorphisms
W) : WAY, £8) — W(DL(PAN)
induced by the functor ¢ are isomorphisms.

Proof. First, we prove the surjectivity of the homomorphism W (¢). Suppose
x € W((DZ(P(A))Mi)). Then, by (5.1), we can write x = [(P,, )] of the
form described in (5.3). Inductively, by (5.11), there is a form (R,, ¥) in
(D5 (P(A))E) such that

[(Re, ¥)] = [(Po, )l =x in W({(DY(P(A)E))

and R, is supported in [d,0]. By (2.9), R, is a projective resolution of
M = Hy(R,) € A. Further, y induces a form yqo : M —> M" and clearly

WO WUM, yo)]) = [(Re, y)] = x.

So, W(¢) is surjective.

Now, we proceed to prove that W(¢) is injective. Suppose (M, q)
is a symmetric form in (A,Y,+®@) and W()([(M,q)]) = 0. Write,
M), c(q)) = (P,,po) where P, is a projective resolution of M of
length d, and ¢ is the induced symmetric form. So, [(P,, ¢9)] = O in
W (D5 (P(A);).-

This means there is a neutral form [(Q., ¢1)] so that [(Ps, pg)] L
[(Qe, ¢1)] is neutral in W((DZ(P(A))?;)). Since [(Q., ¢1)] is neutral, so
is [(Qe, —¢1)]. Hence, [(Ps, p0)] L [(Qe, 91)] L [(Qe, —¢1)] is neutral.
Using the usual isometry, we get that there is a hyperbolic form

(Q.@Qt*, ((1) (1))) with Q. € DY((P(A))

such that
po 0 O
Ue,p) = |P.®0.®0% |0 0 1
0 1 0

is neutral in W((DZ(P(A))Mi))
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(we have so far followed the argument in [B2, 3.5]).
So, (U,, ) has a lagrangian (L,, @). We have an exact triangle

Tt 1L, Lt Tt =w.

Before proceeding, we use (3.3) to make a startlingly simple observation
about the homologies of L¥ :

Hy(L¥) = Hi_ (L) = Ext? (Hg—iy—a(Ls), A) = Ext’ (H_;(La), A) = H_;(La)".

Similarly, H,-(Uf) = H_;(U,)" and further using the remark (3.4) about
naturality of the maps, we get that the long exact homology sequences are

w) ) H_j(a)V.H;
S H @)Y Hj (w) Hi(L) Hj(e) Hi(U) 1(a) 1((;}2[_1(L.)V ......
‘ &3111 Hl(‘P)ll ‘
H_s(Le) Hi(Le)VY H_1(Us)Y H_1(Le)V eeeses
T e e ) o U e ()
Ve H_
...... ﬂ)Ho(L.) Ho(®) Ho(Us) Ho()-Ho(p) Ho(Le)V @
ﬁHQll Ho(‘P)ll
~~~~~~ ——— Ho(L.)VV Ho(U,)V Ho(Le)Y
may o) e o Ue) v Bl —s
H_ H VoH_ H_ H_
...... H_1(Ls) 1(@) H_1(U) 1(a) 1((P)H_1(L.)V 2(w) H_3(La) 2(e)
&H—lll H_l(w)ll WH_3 |1
...... H_1(Le)VVY Hi(Us)V Hi(Le)Y H_a(Le)VV ——————>
W) v U g Bl —— s 2 V@™

Replacing the part of the top exact sequence in negative degree by the
corresponding part of the bottom (dual) exact sequence, we get an exact
sequence:

Hy(w) Hy(a) H_1 ()Y oH1 (p)

—_— H_z(L.)V H1(L.) H1(U.) —_— H_1(L.)V
Ho(w) Ho(a)
Ho(Le Ho(Ue Ho(Le)V H_1(Le)VV
o(L) o) e, o) Ho(w)" 1)
H1(Us)VY Hi(Le)V — > H_o(Le)VV ———8M >
RO AL Hi(@)" (L) Hy () Y

Notice that the complex above is very special, and is “symmetric” about
Ho(U,). So we can apply [B3, 4.1 Lemma] to this sequence. Since the
sequence is exact, we have

[(Ho(Us), Ho(9)] = [(0,001=0 in W(MFPD!(4)).
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However,
Hy(po) 0 O
(Ho(U,), Ho(p)) = | Ho(P.) ® Ho(Q.) ® Ho(0%), 0 01
0 1 0

0 1
(M, Q) L (HO(QO) Y HO(Qo)va (1 0))
So, we have

0 1

= [(Ho(U.), Ho(p))]=0.

The proof is complete. u

6. Shifted Witt groups

In this section, we use the previous results to obtain our dévissage theorem for
the Witt groups W"(DZ(P(A))). We recall that A is a Cohen-Macauly ring
with dim A,, = d > 2 for all maximal ideals m and such that 2 is invertible
in A and that A = MFPD'I(A).

Notations 6.1. For integers j > 0 define the functor ¢; = 7/o¢, which
associates to an object M in A a projective resolution P, of M of length d,
such that H_;(P,) = M.

Definition 6.2. Suppose K := (K, #, 0, w) is a triangulated category with
translation T and 6-duality #. We recall from [B3] that

n(n+1)

T'K = (K,T”o#,(—l)”&),(—l) > 5”117).

is then also a triangulated category with the same translation T but with
((=1)*6)-duality T"o#. If Kg is a subcategory of K satisfying the conditions
of (4.3), we define T" K to be the same subcategory and translation with the
induced duality structure from T"K. Using (4.3), we define the shifted Witt
groups by

W'(K):= W(T"K)  W"(Ko):= W(T"K;) Vnel.

Note that T52 : T"K — T"K is an equivalence of triangulated
categories with duality, for all n € Z. Similarly, TS2 : T"Ko —> T"M Ky is
an equivalence of categories with duality, for all n € Z and so

WH(K) — W'(K)  W'(Ko) — (T"Ky) VnelZ.
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Definition 6.3. Following [BW], by “standard” duality structure on A4,
dd=1) _
we mean the exact category (.A,V ,(—=1)"2 )w). By “standard” skew

. dd-1 _
duality structure on .4, we mean the exact category (A,V ,—(—1)72 w).
We denote the Witt groups

dd—1) _ dd-1) _

W;(A)zw(A,V,(—l) > w), W_;,(A):W(A,V,—(—UTW).

Theorem 6.4. Then, the functor (o : A —> DZ(P(A)) induces an
isomorphism

W (o) : Wg (A) —> WI(DY(P(A)), %, 1, @).

Proof. Recall ¢y was denoted by ¢ in the previous sections. For notational
(d(d=1)
2

convenience wy = (—1)
isomorphism of Witt groups

w. By theorem (5.12), we get the following

1o 1 We (A) —> W(DY(P(A)), #4, 1, wy).

There is a duality preserving equivalence [BW, Proof of Lemma 6.4]

B : (DY (P(A)), Tdox, 1, mp) —> (D”(P(A)), Tdox, (—1)4, (- 1) “F" w).

Note that the later is the shifted category 7% (D?(P(A)), *, 1, w). Composing
no with the homomorphism induced by S, we get the result. O

Now we prove the standard skew duality version of theorem (6.4).
Theorem 6.5. The functor {1 induces an isomorphism
W5, (A) — WO 2(DY(P(A)), *, 1, —m).

Proof. By Theorem (5.12), we have an isomophism

Wi (4) —> W(DQ(P(A)), Tdox, 1, —(—1)‘“‘12’”117).

. d(d—1)
Write wyg = —(—1) 2

Ty : (DY(P(A)), T8 20%, 1, wy) —> (DY (P(A)), T ox, 1, wy).

@ . There is an equivalence of categories [B2, 2.14]

This induces an isomorphism

W (DY (P(A), T ox, 1, wo) — W(DY(P(A)), T, 0%, 1, wo).
As in the proof of [BW, Lemma 6.4], there is an equivalence of triangulated
categories with duality

dd+1)
2w

(DP(P(A)), T 20x, 1, wp) — (DP(P(A)), T4 2ox, (=1)?72, (—1) ).

The latter category is T¢2(D’(P(A)),*, 1, —w). The proof is
complete. O
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Finally, we have the following regarding odd shifts.
Theorem 6.6. Forn=d — 1,d — 3, we have
W" (D% (P(A)), %, 1, £w) = 0.
Proof. First consider n = d — 1. It would be enough to prove that
W(DY(P(A)), T ox, 1, +w) = 0.

Suppose (P,, ¢) is a form in DZ(P(A), T ox, 1, +w). By a little tweak
in (5.1), we can assume that P, is supported on [n + (d — 1), —n] with
n > 0and H_,(P,) # 0. By imitating the arguments of theorem (5.11), we
can keep shortening the length of the complexes which give our symmetric
form. Eventually, we will be reduced to the case where the complex is P, is
supported on [d — 1, 0]. By theorem (2.9), P, is exact. So, [(P, ¢)] = 0. The
same arguments apply when n = d — 3. The proof is complete. O

Using the 4-periodicity, we now obtain the theorem mentioned in the
introduction:

Theorem 6.7 (shiftFinal). Let B = (DZ(P(A)), T, , 1, @). Then, for
n € 7Z, we have

1. Wit (B) = W (A),
2. Wd+4n+l(8) =0,

3. Wd+4n+2(8) — WY_(.A),
4. Wwd+4n+3 (B) =0.

A. Some formalism
The purpose of this section is to prove the following theorem:

Theorem A.1. Suppose £ is a full subcategory of a Z[%] abelian category
B with the 2 out of 3 property for short exact sequences, and has duality
(&Y ,@). Let DP(E) = (D), *,a, w) denote the derived category,
with duality, of (£,Y , @). Also, let D? (£) denote the derived category, with
duality, of objects in D?(E) with homologies in E. Then the homomorphism

W) : WE.Y @) — W(DEE)
induced by the functor u : £ — Dg (&) is an isomorphism.
In particular, with £ = A and B = M(A), we obtain that
W) : WA, +@) — W(DY(A,Y, +&))

as promised in section 5.
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The proof of the theorem is essentially the same as the proof of
[B3, Theorem 3.2] with the extra check that all constructions yield complexes
whose homologies are in .4. This boils down to using the most elementary of
sublagrangians (concentrated in just one degree) and reducing length. In any
case, we follow the proof in [B3, Theorem 3.2]. Since the category £ has all
the properties required in the results in [B3, Section 3]), we will freely borrow
them.

To start with, injectivity of W (x) follows directly because the isomorphism
W(&) — W(DP (£)) (proven in [B3, Theorem 4.3]) factors as

% W(Dg(é’))

=

W(Db(€))

W(E)

We move to the proof of surjectivity which, as we mentioned above will
require checking that we remain in Dg (&) through all the lemmas establishing
[B3, Theorem 3.2]. To start with, we establish the following result regarding
duality, which also provides an alternative proof of (3.5).

Lemma A.2. With the same notations as in (A.1), Dg(é’) is closed under
duality.

Proof. Let P, be an object in the derived category Dg (). Write

) di
P, : P2 Pl PO P_l P_2

P} : - PY, PY, IN PY PY

Since the complexes are bounded and the homologies are objects of £, all the
kernels Z; = ker(d;), images B; = image(d;+1) and quotients % are also

objects of £. Hence, so are their duals. But we have an exact sequence

\% \%
0——= (gt:l) PY, (g;) —— Hi(P}) —>0

The first three terms in this sequence are in &, hence so is Hy(P;). The proof
is complete. O

Lemma A.3. Letx € W(DZ(S)). Then x = (P, s) such that

1. P, is bounded and s : P, —> P[ is a morphism of complexes, without
denominator.
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2. s is quasi-isomorphism.
3. s is strongly symmetric (i.e s, = s; Vi € 7L).
4. Hi(P,) € € foralli € 7.

Proof. Let the form x be given by (X,, #). By definition there is a complex
P, which is an object of Dg (£) and a chain complex quasi-isomorphisms
t: P, — X,and ¢y : P, —> X} such that # = @ot~!. Then, s = t*
po = t*nt is a symmetric form on P, and (X,, #) is isometric to (P,, ¢).
Clearly s is an actual morphism of complexes, a quasi-isomorphism and
H;(P,) € & for all i € Z. Finally, using that % exists, we can make the map
strongly symmetric. O

Lemma A4. Let (P,,s) be a symmetric form in D?(S) as in (A.3), such
that P, is supported on [m, —n] withm > n > 0. Then (P,, s) is isometric to
a symmetric space (Qa, t) such that Q, is supported on [n, —n] and (Q,, t)
has all the other properties of (P, s).

Proof. This is precisely [B3, Lemma 3.7] in our context. Note that since
we can do this in the derived category without the homology condition
D’(€), we use the same result to get (Q,, ) isometric to (P,,s) with
the required condition. However, since the isometry gives in particular a
quasi-isomorphism P, AN Q. and so Q, is also an object in Dg(c‘:).
The proof is complete. u

Lemma A.5. Let (P,, s) be a symmetric space, as in (A.3). with support on
[—n,n] and n > 0. Then there exists a symmetric space (Q., t) such that

1. (Qe,t)isasin(A.3).

2. (Qe, ) is supported in [n, —(n — 1)].
3. Hi(Q,) €& foralli € 7.

4. [(Pa, )1+ [(Qe, )] = 0 in W(DZ(E)).

Proof. Once again this is [B3, Lemma 3.9] in our context. We skim through
the proof mentioning only the significant points and most important, checking
the points where we need to check the extra homology condition. We begin
by proving the lemma in the case n > 2. Write

d d d

Po= -0 Pn Pn—l P—n 0
sl ls sl ls
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Define (Q., t) as follows, on the left side:

S
d ©,)
Qe=:--0— P, —> @Pn1—>P,.2—> c+P_(n— 2)—>P_(n 1)y —>0——>0

Fe T

- v R = v
0—0 PY . s 7 Pr_2) —> P ,®P)_ (;‘WP,_ —>0

I = I

v
v P—("—l) v

dV

It was proved in [B3, Lemma 3.9] that ¢ is a quasi-isomorphism. So, it follows
Hy(Qs) =0,  Hy—1(Q4) = Hy1(Q7) Zker(d) € €.
Since image(0, d,,—1) = image(d,_1) we have
Hi(Qs) =Hi(P))e& V i<n-2.
Therefore
H;(Q,) €& forall ieZ.

So Q, satisfies the last condition of (A.3). The other conditions of (A.3) are
shown to be established in [B3, Lemma 3.9].

Therefore, Q, satisfies (A.3). It was established in [B3] that (P,,s) L
(Q., 1) is neutral in D(E), by showing that (P,,s) L (Q,, 1) is isometric
(in D*(£)) to the cone of the morphism z : T-!M* — M, defined as
follows:

1M* J—— 0 Pn —d P’n—l —d P P—(n—2) i> P—(n—l) _— 0
AR T
— Vv _> . v
= P_(Tn_l) — P_(Tn 2) -BY_ Py T
degree = n n—1 -n

Since all the boundaries and cycles of P, and P} are objects of &£, so are
H;(M,) and H;(M,)*. Therefore,M, and M are objects of Dg ).

Let Z, = cone(z). In [B3, Lemma 3.9], it is further shown that there is a
symmetric form y : Z, —> Z7 and that (Z,, y) is isometric to (P, s) L
(Q., 1) in D?(E). But this tells us that H;(Z,) = H;(P,) ® H; (Q.) and hence
Z, is an object of Dg ).

Now again following the proof of [B3, Lemma 3.9], it is shown that
T2 = zin Dg(é’) and that the form y actually fits in to make M, a

lagrangian for (Z,, y). Hence, this proves the lemma when n > 2.
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In the case n = 1, (P,, 5) is given by

P, = 0 P Py P_y 0
Sl Sl S\\ Sl

9
1<
&
s
o
o

) 0 d
dv —s
f=...0 0 PP
© PO avav )

PY 0

The degree zero term is in the middle. In [B3, Lemma 3.9], it is established
that 7 is a quasi-isomorphism. It follows that H; (Q,) = 0 for all i # 0 and

P_vl@PO

HO(Q.) = Py

ef.

So, Q, satisfies all the condition in (A.3), because the remaining three
conditions are established in [B3, Lemma 3.9]. Now (P,s) L (Q,t) has a
lagrangian, namely

T-'MF = 0 P —% p 0
Zl lO lsd
M‘ = 0 POv 4V Pl\/ 0
A A A
| | I
| | |
degree = 1 0 -1

Again,
Ho(M,) =ker(d"), Hi(M,)=coker(d”) arein &.

So, M, and hence M, are objects of Dg (&). The rest of the proof is exactly
the same as in the case n > 2. The proof is complete. O

Finishing the prof of (A.1): We use (A.3) to represent any element x
in W(DZ(A)) by a chain complex in Df’A(.A) and a strongly symmetric
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quasi-isomorphism to its dual. Then, by alternate use of lemma (A.4) and
(A.5), we reduce any element in W(D? (£)) to a chain complex in D?(S)),
concentrated at degree zero. Of course that means the quasi-iromorphism is
actually an isomorphism and hence x is the image of an element in W (A)
via W(u). So W(u) is also surjective. So, the proof of theorem (A.l) is
complete. O
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