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Abstract: Before the work of Quillen (1972), Higher Algebraic K-Theory
was considered as a part of Commutative Algebra (Rings and Modules). In
this talk we would discuss this author’s recent efforts to bridge this artificial
(tantalizing) gap between Commutative Algebra and Algebraic K-Theory,
which developed during this last forty plus years. During the same period,
Algebraic K-Theory also has progressed a long distance. Advent of negative
K-theory is among the greatest milestones.

For some further flavor, assume X is a quasi projective scheme. Given
a chain complex map v, : Lo — G, between two complexes Lo, G,, of
coherent (or locally free) sheaves on X, one complex can be viewed as an
approximation to the other. In general, constructing such approximations
would be challenging. In the affine case X = Spec(A), such a map was
constructed by Hans-Bjgrn Foxby (unpublished), using Koszul complexes.
We implement this construction to quasi projective schemes. This can be
considered as a "graded version" of Foxby’s construction. The main point of
this talk is, how we apply this approximating tool to (negative) K-Theory
and Grothendieck Witt (GW)-Theory.



1 The Morphism Construction

First, consider affine case.

Lemma 1.1. Let X = Spec(A) be an affine scheme.

Consider the following diagram

0—P,——~P, —=—P——=Py—M—0
|s
0—Gy—Gpqg—r G —Gy—rN—0

where f : M — N is a homomorphim of A-modules,
the first line is a projective resolution of M and the
second line is an exact sequence of A-modules. Then,

f extends to a map of complexes:

0—P,—~P, ———P——=Py—M——0
fa! fn_li neo o [f
0 G, G,_q .y Gy Go N 0

Perhaps, the second line of (1) is the target of our
interest, while the first line (or "some concoction")

approximates the second line.



When the 2"¢-line is not exact, H.-B. Foxby [F, FH]:

Lemma 1.2.

Let G. 0 Gn Gn—l s G1 G()

be a bounded complex of finitely generated A-modules.

Let  fi, fo,..., [+ € m Ann (H;(G,)) be a sequence.
i€z
V>0, Ke:=K(f f . .., f") denote the Koszul complex.
Forz € Hy(G,), let ¢, - Hy(Ko) — Hy(G,) denote the
map 1 — 2. Then, there is a map of complexes

0y Ke — G, > Hy(pe) = ;.

If fi,..., fnis regular then, H;(/Cq) =0V i #£ 0.



Taking direct sum of such Koszul complexes:

Theorem 1.3. Under the same set up as in (1.2): There
is a bounded complex P, of projective modules and a

map e : Py —> G4 of complexes, such that

1. Ho(we) : Ho(Ps) — Hy(Gl) is surjective.

2. In fact, P, would be a direct sum of ICo(f1', ..., f1),
with n > 0.

3. Consequently, if fi,..., f, is regular, then P, is a
resolution of Hy(P,) and

grade (Hy(P,)) = projdim (Hy(P,)) = r

Proof. Follows from (1.2). .

Corollary 1.4. Nothing prevents me from writing a
graded version of the same (1.3) and sheaffify.



Lemma 1.5. Let X be a quasi projective scheme
over Spec(A). More precisely, S = @;>0.5; is
a noetherian graded ring, with Sp = A, § =
A[S1] and Let X be an open subset of X =
Proj(S).

Let Y C X be a closed subset of X, with

grade(Oy,Ox) >r.  Write V(I)=Y

be the closure of Y, where I is the homogeneous
ideal of S, defining Y. Then,

= f17°"7f7“€] > fila'”)fij

induce regular S(,y-sequences on X.

Proof. Simple prime avoidance methods. n



Corollary 1.6. With fi,..., f, € [ in lemma

1.5, we have the following:

1. First, we can form the Koszul complexes
Ko(ff', ..., f) of graded modules.

2. By sheafification, we get the Koszul com-
plexes ICo(f{, - -, f7), which is in
ChP(Coh(V(X))) — ChP(Coh(X)).

3. Its restriction Ko(fT', ..., f')x, is in
ChP(Coh(V (X))) — Chb(C’oh( ).

In deed, KCo(fT, - ., f}")|x 1s a resolution of
7‘[0 (K.(f{l, c ey f[b)‘X) and

grade (Ho (Ko(*)1x)) = dimy ) (Ho (Ke(*)x)) =7

With such choices of homogeneous regular sequences
fi,..., fr and by sheafification of the graded version of

Foxby’s construction we get the following:



Theorem 1.7. Let X be quasi-projective (Cohen-
Macaulay) scheme over Spec(A). Let G,:
Grkir—Gk 5 G 591 —G—G

be a complex of coherent O x-modules. Assume

VieZ, Y, = Supp(Hi(G.)), grade(Oy,Ox) >k

Then, 4 L¢: 0—L)—---—Lyj—0 a complex

of locally free sheaves and a morphism

Ve : Lo — G, of complexes, such that

1. Ho(v) : Ho(Le) = Ho(Ge) is surjective.
2. L, is a locally free resolution of Hy(L,).
3. And,

grade (Ho(La)) = dimy(x) (Ho(Ls)) = k
(2)



1.1 Derived Equivalences

Using Theorem 1.7, we prove some results on Derived

equivalences, which has wide applications in K -Theory.

Notations 1.8. Let X will denote a noetherian
scheme, with dim X = d.

1. Use the usual notations Coh(X), ¥ (X) etc.
For integers £ > 0, denote

( Coh*(X) == {F € Coh(X) : grade (F,Ox) >k}
M(X) == {F € Coh(X) : dimyx)(F) < oo}
MF(X) .= {F € M(X) : grade (F,Ox) > k}
CMF(X) =

\ {F e M(X) : grade (F, Ox) = dimy (x)(F) = k}

So, we have a filtrations of M(X) = M°(X)

and Coh(X) = Coh"(X), as follows

[ MO(X)— MYX) e~ M(X) 0

/\

\ Coh®(X)~—Coh!(X)~— - -~—Coh¥(X)~—0
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This would induce filtrations on other asso-

ciated categories.

2. The categories Coh(X), MF(X), CM*(X)
are exact categories. For exact categories
&, the bounded derived category D°(&) is

obtained as follows:

(a) The objects of D’(&) is same as that of
the category Ch%(&) of bounded chain

complexes.
(b) Morphisms of D°(&) are obtained by in-
verting the quasi-isomorphism in Ch%(&).

3. For & = ¥(X),M(X), and integers k > 0,
{ 7" (&)= {F.e D (&) Vi H;(F) € Con*(X)}

would denote the full subcategory of such

objects. (Note the difference between two
fonts D, 2.)



The Main Theorem on Derived Equivalences:

Theorem 1.9. Let X be a noetherian quasi-projective
scheme over an affine scheme Spec(A) and k& >

0 be a fixed integer. Consider the commutative
diagram of functors of derived categories:

DYCMF!(X)) = DI (M (X)) - P41 (MI(X)) —£ 21 (7 (X))

o | | "

D' (CMM(X)) 5D (M"(X)) —7— 2" (M(X)) — - 7"V (X))
(3)
Then, all the horizontal functors are equiva-

lences of derived categories and all the vertical
functors are fully faithful.

10



2 Application of (1.9) to Negative K-theory

Theorem 1.9 applies to K-theory (and Grothendieck Witt
theory).

2.1 Background on K-theory

Suppose & is an exact category. The Quillen defined
the K-theory space through the following steps of con-

structions:
E — QO — BQE — K(E&):=QDB(QE))
where K (&) is a topological space and defined

Vi>0 KJ(&)=mK(E)) =m1(BA(E)).
Theorem 2.1 (Localization). Suppose

B~ of & is an exact sequence of abelian categories

Then, the induced sequence
K(#)—K (o/)—K (%) isahomotopy fibration.
Consequently, there is a long exact sequence

.. —>Kn <=%);>Kn (‘Q%> _»Kn (C€> _)Kn—l <%) -

11



Remark: Suppose X is a noetherian scheme, ¥ C X
is a closed sunset and U = X \ Y.

1. Theorem 2.1, is often applied for the sequence
Coh(Y)—Coh(X)—Coh(U)

Consequently, we get a long exact sequence of G-

groups

- —=Gy, (Y);) Gy <X> — Gy, (U) — G <Y> -

2. A point is ,that it does not apply to the sequence
ry)  V(X)—7(U)

3. This justifies the place on negative K-Theory, also

known as non-connective K-Theory.

12



2.2 Negative K-theory

Our standard reference for K-theory is Schlichting [S2].

1. K-Theory spectra was defined for exact categories
&, which is a sequence of topological spaces with

bonding maps.

2. K-Theory spectra was also defined for complicial
exact categories & with weak equivalences. We will

be thinking of (Ch%(&), 2), where 2 denotes the

set of all quasi isomorphisms.

This is also known as negative K-theory or non-

connective K-theory.

3. For such a category, K(&) will denote the K-theory
spectra of & and K;(&) will denote the K-groups.
Likewise, K(&) would denote the K-theory space
of & (as was defined by Quillen).

[ have a preference to state the non-connective ver-
sion of K-Theory, and skip the connective version
(K-Theory).

13



Before stating the main application of (1.9) to K-

theory, we have the following notations:

): Vi H; (F.) € Coh*(X)}
):ViH; (F,) € Coh*(X)}
Vi H; (F.) € Coh™(X)}
Vi H,; (F.) € Coh*(X)}

<’ Chh (¥ (X)) = (¢hF (¥ (X)), 2)
| €hF (M(X)) == (€h* (M(X)), 2)

the complicial exact categories with weak equivalences.

likewise, denote

Also, For a noetherian scheme X, denote

H={Y € X :codim(Y) =k} and X, :=Spec(Ox.,).

14



Theorem 2.2. Suppose X is a Cohen-Macaulay
quasi-projective scheme over an affine scheme
Spec(A) and k > 0 is an integer. Consider the
diagram of K-theory spectra and maps:

K (CMFH (X)) K (CMF(X)) [Lexm K(CMF (X))
l 1| Yo l
K (Ch* (CMF(X))) K (Ch? (CMF(X))) [Texm K (ChP (CM* (X,)))
2 ¢ 2
K (CH® (MFH(X))) ——K (CH (M) —— [Lexoo K (CH (MF (X))
l l|t {
K (¢r" (M(X))) aexo K (€h" (M (X))
2 U 2

K (€h* (v (X))) K (&n* (¥ (X))) [ecxw K(€RY (v (X2)))

Then, the vertical maps are homotopy equiv-
alences of K-theory spectra. Further.the third,
fourth, fifth lines are homotopy fibrations of
K-theory spectra. In particular, the top line
is a zig-zag sequence of homotopy fibration of
K-theory spectra, of exact categories:

K (CMF (X)) —K (CMF(X)) — 1, ey K (CMF (X))

15



Proof. ¥, is an equivalence by Agreement Theorem.
Other vertical maps are Homotopy equivalences because
of Theorem 1.9. The fifth line is equivalence because
for the following well know decomposition Lemma 2.3.

Hence so are hence third and fourth. -

Lemma 2.3. Suppose X is a Cohen-Macaulay quasi-
projective scheme over an affine scheme Spec(A) and
k > 0 is an integer. Then, the sequence of derived

categories
MV (X)) — 2" (V' (X)) —Lexm D (V(Xo))

is exact up to factor. If X is regular, this sequence is

exact.

16



[t is customary to write down the following K-theory
exact sequence, which is an immediate consequence of

(2.2).
Corollary 2.4. Let X and k be as in Theorem 2.2.

Assume X is Cohen-Macaulay. Then, for any integer

n, there is an exact sequence of K-groups,

K, (CMF(X)) — =K, (CM*(X)) —= ®,cxw K, (MF(X,))

— K, (CMF (X))

Proof. Follows from Theorem 2.2. The proof is complete.n

Remark 2.5. Let X be as in Theorem 2.2. Assume X

is Cohen-Macaulay. The following are some remarks.

The diagram to compute the Gersten complex, re-

duces to

@xex(k—l)Kn+l (C’Mk—l(Xx)) K, _; (OMk—i-Z(X))

-~
—
-
-
—
-
—
-
-
S

K, (CM*(X)) Dpexw K (CMF(X,)) K1 (CM*(X))

~
-
-~
-
-
-~
-
-
-
EN

Kn (CMkil(X)) @xeX(k‘*‘l)Kﬂ—l (CMk+1(X$))

The dotted diagonal arrows form the Gersten complex.
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The spectral sequence given in |B3| takes the follow-

ing form:

E7? = @ K_, ,(CMP(X,)) = K_,(¥(X)) along p+q=n.
zeX ()

18



3 Grothendieck-Witt theory

To do Grothendieck-Witt theory, one needs to
incorporate dualities, to what is said above. We
refer back to the diagram 3, in Theorem 1.9.

The categories

M*(X), Ch'(M"(X)), D"(M"(X)), M(X), 2"(M(X)), --

have NO natural duality,

However:

19



Lemma 3.1. Let X be a noetherian scheme
and k& > 0.

1. Then, €h°(¥ (X)) and 2%(¥ (X)) have a
duality induced by Hom (—, Ox).

2. F s Exth (F, Ox)
is a duality on  CMF(X).
It induces a duality on Ch’(CM*(X)) and
D' (CMF(X)).

3. There is no natural functor form
Ch*(CM*(X)) to €h° (¥ (X)).
The functor D*(CM*( X)) — TFP* (¥ (X))

is a duality preserving equivalence.

This makes us go through the category Per f(X)
of perfect complexes, which has a duality

Fo = Hom (F,, I,) where I, is an injective
resolution of Oyx.

20



The following is a diagram of equivalences,

analogous to the diagram in Theorem 1.9.

Corollary 3.2. Suppose X is a quasi-projective
scheme over an affine scheme Spec(A), and k >

0, r are integers. Consider the diagram
dgCM" (X)) —T*dgPer f*(X)~—T*dg" v (X)
(4)
Intuitivey, think of:
Ch’ (CMF(X)) —T*Per f*(X)—T*€h" (¥ (X))
(5)
In this diagram, all the arrow are functors pre-
serving quasi isomorphisms and duality. Fur-

ther, the horizontal arrows induce equivalences

of the associated triangulated categories:
D' (CMMX))—T"D" (Per fH(X))~—T*2" (V (X))
(6)

21



Main Theorem in GW-Theorey:

Theorem 3.3. Suppose X be Cohen-Macaulay
quast projective scheme, k,r are as above. As-
sume further that X is a Cohen-Macaulay scheme.
Consider the following diagram of GW -Bispetra:

GWIH (dgOMFH (X)) GWIT (dgCMF (X)) [Loexo GW (dgCM* (X))

| | |

Gkt (ngerka(X)) G #] (ngerka)) [Teexm GW k+7] (dgPerf(Xy3))

| ! |

GW I (dght19 (X)) ——= GWHFH (dgF ¥ (X)) —— [ Tpe oo GWEHT (dgh v (X))

In this diagram, all the vertical arrows are
equivalence of homotopy Bispectra and the bot-
tom sequence is a homotopy fibration of bispec-
tra. In particular, there is a sequence zig-zag
maps of Bispectra

GWI=T (dgCMM1(X)) —= GW T (dgCMF (X)) — 11, c xoo GWIT (dgCM* (X))

that is a homotopy fibration.
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