Ideal theoretic approach to Algebraic ObstructionTheory

Satya Mandal, U. Kansas K-theory working group, ICTP, Italy

December 3-14, 2012

Correspondence

Theorem ([Swan 1962])

Suppose M is a (compact connected) Hausdorff topological space. Then the association

$$\mathcal{E} \to \Gamma(\mathcal{E})$$

is an equivalence of catagories, between the category $\mathcal{V}(M)$ of vector bundles on M and the $\mathcal{P}(C(M))$ of finitely generated projective modules over the ring of real valued continuous functions C(M).

The Stage

► This theorem sets the stage for research in projective modules over noetherian commutative rings A to follow the lead of the theory of vector bundles.

Background

- ▶ The obstruction theory in topology is classical.
- The advent of obstruction theory in algebra is a more recent phenomenon.
- ► The germ of an algebraic obstruction theory was given by Madhav Nori, around 1990.

The Theme

▶ Suppose A is a commutative ring of dimension n. Given a projective A-module P of rank r, question is whether we can define an obstruction group E(P) and an obstruction invariant $e(P) \in E(P)$ such that

$$e(P) = 0 \iff P \approx Q \oplus A$$
.

Serre's Splitting Theorem

- ▶ In this lecture A will always denote a noetherian commutative ring with $\dim A = d$.
- Again, following the lead of corresponding theorem in topology, we have the following.

Theorem ([Serre1957])

If P is a projective A-module of rank r > d, then $P \approx Q \oplus A$ for some Q.

▶ So, we would study projective modules P of rank $r \leq d$.

Two Approches

There are two approches to algebraic Obstruction theory.

- ► The ideal theoratic approach: Madhav Nori provided the germ of an algebraic obstruction theory around 1990 ([MS, Ma1, BS2]). The obstruction groups are generated by ideals and local orientations.
- ► K-Theoretic apporach: Subsequently, Barge and Morel ([BM]) proposed a K-theoretic approach to the same in 2000. This approach was given a complete shape by Jean Fasel ([Fasel1, Fasel2, FS]).

The Status of these two approaches

- ► After Nori provided a sense of direction, there was a flurry of activities over the last two decades.
 - ▶ The activities remained mainly focused within the top rank case (i.e. when rank(P) = d). The theory seems complete, in this case.
 - However, it fails to be functorial, due to the lack of progress in other cases.
 - ► This theory applies to noetherian commutative rings, without any smoothness hypothesis.

The Status of these two approaches

- ► The K—theoretic approach seems more complete and functorial. It applies mostly when the ring A is regular.
- ► Two approaches are yet to be fully reconciled. Perhaps, this is because the theory is not developed enough in ideal theoretic approach.
- ► In this talk, we will mainly discuss the ideal theoretic approach. I am hopeful, others will speak on the K—thoeretic approach.

The Predecessor

- Nori's introduction of the program preceded by the work of M. P. Murthy and N. Mohan Kuman ([MkM, Mk2, Murthy 1994, MM]) on Algebraic obstruction theory for affine algebras A over algebraically closed fields.
- For such a ring A, with dim A = d the Chow group $CH^d(A)$ is the obstrction group. For a projective A-module P with rank d the obstraction class was the Chern class $C^d(P) \in CH^d(A)$.

The Predecessor: Continued

▶ Murthy proved ([Murthy 1994]), for *P* as above

$$P = Q \oplus A \iff C^n(P) = 0.$$

- Note the theorem works only in the top rank case.
- ▶ There are examples ([Mk1]) stably free non-free projective A-modules Q with rank(Q) = n < d. So, vanishing of the top Chern class $C^n(Q) = 0$ would not guaranty that $Q = Q_0 \oplus A$.

The Definition: Overview

Notations: A will always denote a noetherian commutative ring, $\dim A = d$ and L will denote a projective A-module of rank one.

- For integers $0 \le n \le d$, an obstruction group $E^n(A, L)$ was defined.
- ▶ Let P be a projective A-module of rank d with $\det(P) = L$. Assume $\mathbb{Q} \subseteq A$. Given an isomorphism $\chi: L \xrightarrow{\sim} \wedge^d P$ an obstruction class

$$e(P,\chi) \in E^d(A,L)$$
 was defined.

▶ Such an $\chi: L \xrightarrow{\sim} \wedge^d P$ is called an orientation of P.

Continued

▶ In fact, such orientation $\chi: L \xrightarrow{\sim} \wedge^d P$ induces an isomorphism

$$\varphi_{\chi}: E^d(A, L) \stackrel{\sim}{\to} E^d(A, \wedge^d P)$$
 and $\varphi_{\chi}(e(P, \chi)) = e(P, id)$

▶ I like to denote

$$e(P) := e(P, id) \in E^d(A, \wedge^d P).$$

Formal Definitions

In this section (in next several frames) we define Euler (obstruction) class groups of commutative noetherian rings.

Definitions.

- We write $F_r = L \oplus A^{r-1}$.
- For an A-module M, the group of transvections of M will be denoted by $\mathcal{E}I(M)$ (see [Ma3] for a definition).

Local Orientation

A **local** *L*—**orientation**, of codimension r, is a pair (I, ω) , where

- 1. I is an ideal of A of height r and
- 2. ω is an equivalence class of surjective homomorphisms $\omega: F_r/IF_r \twoheadrightarrow I/I^2$.
- 3. The equivalence is defined by $\mathcal{E}I(F_r/IF_r)$ —maps. Sometimes, we denote the equivalence class of ω , by ω .
- 4. Let $G^r(A, L)$ denote the free abelian group generated by all local orientations (I, ω) of codimension r such that Spec(A/I) is connected.

Global Orientations

- 1. Suppose I is an ideal of height r and $\omega : F_r/IF_r \rightarrow I/I^2$ is a local L-orientation.
- 2. By [BhatwaSri2000], there is a unique decomposition

$$I = I_1 \cap I_2 \cap \cdots \cap I_k \quad \ni \quad \forall i \neq j \quad I_i + I_j = A$$

and $Spec(A/I_i)$ is connected.

3. Then ω naturally induces local L-orientations $\omega_i : F_r/I_iF_r \rightarrow I_i/I_i^2$. Denote

$$(I,\omega):=\sum (I_i,\omega_i)\in G^r(A,L).$$

Global Orientations: Continued

1. A local L-orientation (I, ω) , of codimension r is said to be a Global orientation if there is a surjective lift Ω of ω as follows:

$$F_r - -\frac{\Omega}{2} - \gg I$$

$$\downarrow \qquad \qquad \downarrow \qquad .$$

$$F_r/IF_r \xrightarrow{\omega} 1/I^2$$

2. Let $\mathcal{R}^r(A, L)$ be the subgroup of $G^r(A, L)$, generated by global L—orientations.

The Euler class Groups

Now define the **Euler class group** of codimension r cycles as

$$E^{r}(A, L) = \frac{G^{r}(A, L)}{\mathcal{R}^{r}(A, L)}.$$

The Obstruction Classes

- Suppose P a projective A−module of rank r.
- In the ideal theoretic approach, there is no satisfactory definition of an obstruction (to be called Euler class) class e(P) when $rank(P) = r < d = \dim A$.
- ▶ However, a satisfactory definiton of e(P) is available when $rank(P) = d = \dim A$.
- In fact, the theory is fairly complete when rank(P) = d = dim A.

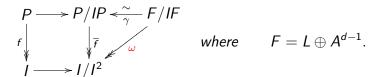
Definition: The Euler Classes

Now we assume that $\mathbb{Q} \subseteq A$.

- Let P be a projective A—module of rank d, and det(P) ≈ L.
- ▶ Let $\chi: L \xrightarrow{\sim} \wedge^d P$ be an orientation.
- ▶ Let f: P woheadrightarrow I be a surjective homomorphism, where I is an ideal of height d.

Continued: The Euler Classes

- ▶ Pick an isomorhism $\gamma: F/IF \xrightarrow{\sim} P/IP$ that is compatible with the orientation $\chi: L \xrightarrow{\sim} \wedge^d P$.
- define ω by the commutative diagram



Continued: The Euler Classes

▶ Define the Euler class

$$e(P,\chi) = (I,\omega) \in E^d(A,L)$$

In particular, define

$$e(P) := e(P, id) \in E^d(A, \wedge^d P)$$

▶ This version of the definition of $E^d(A, L)$ and $e(P, \chi)$ are due to Bhatwadekar and Sridharan ([BhatwaSri2000]).

The obstruction theorem
Real Affine Varieties
Topological Obstruction theory
The Homomorphism
The assignment
Q.E.D.
The tangent bundle on Sⁿ
The Tangent Bundle
Vanishing of Chern Classes

The Obstruction Theorem

Bhatwadekar and Sridharan proved Nori's Obstruction Conjecture.

Theorem ([BhatwaSri2000])

- ▶ Suppose A is a noetherian commutative ring with dim $A = d \ge 2$. Assume $\mathbb{Q} \subseteq A$.
- ► Suppose P is a projective A—module d,

$$e(P) = 0 \in E^d(A, \wedge^d P) \iff P = Q \oplus A.$$

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on \mathbb{S}^n The Tangent Bundle Vanishing of Chern Classes

The Real Manifold

- Let $A = \mathbb{R}[x_1, x_2, \dots, x_n]$ be finitrly generated algebra over the reals \mathbb{R} .
- Write $A = \frac{\mathbb{R}[X_1, X_2, ..., X_n]}{I}$ where I is an ideal of the polynomial ring $\mathbb{R}[X_1, X_2, ..., X_n]$.
- ▶ Let M be the set of real points $v \in \mathbb{R}^n$ such that f(v) = 0 for all $f \in I$.
- Assume is A is smooth. Then $M \subseteq \mathbb{R}^n$ is a smooth maifold with dim $M = \dim A = d$. (Implicit function theorem.)

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

The Structure Theorem

Theorem ([BhatwadekarDasMandal])

Let X = Spec(A) be a smooth real affine variety with dim $A = d \ge 2$ and M = M(A) be the corresponding manifold.

- ▶ Write $\mathbb{R}(X) = S^{-1}A$, where S is the set of all $f \in A$ that does not vanish at any real point X. (All complex points are killed.)
- $ightharpoonup C_1, \cdots, C_t$ be the compact connected components of M.

The obstruction theorem Real Affine Varieties
Topological Obstruction theory
The Homomorphism
The assignment
Q.E.D.
The tangent bundle on Sⁿ
The Tangent Bundle
Vanishing of Chern Classes

Theorem: Continued

- ▶ $K = \wedge^n(\Omega_{A/\mathbb{R}})$ be the canonical module of A and K_{C_i} be the induced line bundle on C_i .
- ▶ Let L be a projective $\mathbb{R}(X)$ -module of rank 1 and L_{C_i} be the induced line bundle on C_i .
- Assume that

$$L_{C_i} \simeq K_{C_i} \text{ for } 1 \leq i \leq r \quad \text{and} \quad L_{C_i} \not\simeq K_{C_i} \text{ for } r+1 \leq i \leq t.$$

Then,

$$E^d(\mathbb{R}(X), L) = \mathbb{Z}^r \bigoplus \left(\frac{\mathbb{Z}}{(2)}\right)^{t-r}$$

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Topological Obstructions ([Steenrod1951])

- ▶ Suppose M is a real smooth manifold with dim $M = d \ge 2$ and \mathcal{L} is a line bundle over M. Then, for $0 \le n \le d$, there are obstruction groups $\mathcal{H}^n(M, \mathcal{L})$.
- ▶ If \mathcal{L} is trivial (the orientable case), these groups turn out to be the singular cohomology groups $H^n(M, \mathbb{Z})$. In the non-orientable case, they are the cohomology group $H^n(M, \mathcal{G}_{\mathcal{L}})$ with local coefficients in a bundle of groups.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Topological Obstructions

► For a vector bundle \mathcal{E} on M with rank $r \leq d$, there is an invariant

$$w(\mathcal{E}) \in \mathcal{H}^r(M, \wedge^r \mathcal{E})$$
.

- ▶ If \mathcal{E} has a never-vanishing section, then $w(\mathcal{E}) = 0$.
- For rank r = d, conversely,

$$w(\mathcal{E}) = 0 \Longrightarrow \quad \mathcal{E} = \mathcal{F} \oplus \mathcal{R}.$$

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Algebra and topology

With notaions as in the above theorem, the obstructions in topology and algebra relates as follows.

Theorem ([MandalSheu3])

- ► There is a canonical homomorphism $\epsilon: E(A, L) \to \mathcal{H}^d(M, \mathcal{L}^*)$.
- ▶ In fact, ϵ , factors through an isomorphism

$$E(X(\mathbb{R}),L\otimes X(\mathbb{R}))\stackrel{\sim}{ o} \mathcal{H}^d(M,\mathcal{L}^*)$$
 where S is

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

For a projective A-module P of rank d, we have

$$\epsilon(e(P)) = w(\mathcal{E}^*)$$
 where \mathcal{E} is the vector bundle on M with the module of sections $= P \otimes C(M)$.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism
The assignment Q.E.D.
The tangent bundle on Sⁿ
The Tangent Bundle Vanishing of Chern Classes

The Homomorphism ϵ : Orientable case

We will define ϵ in the orientable case.

- Assume M is orientable.
- Let C_1, \ldots, C_r be the compact connected components of M. Then, the topological obstruction group $\mathcal{H}^d(M, \mathbb{R}) = \mathcal{H}^d(M, \mathbb{Z}) = \bigoplus_{i=1}^r \mathcal{H}^d(C_i) = \mathbb{Z}^r$.
- ▶ One can prove, in this case, $E^d(A, A)$ is generated by local orientations (m, ω) , where $m \in Max(A)$.
- ▶ We will give $\epsilon(m, \omega) \in H^d(M, \mathbb{Z})$.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Orientable case

- ▶ Suppose (m, ω) is a generator of $\mathcal{G}(A)$, where m is a maximal ideal of A.
- Let v be the point (real or complex) corresponding to m.
- Define

$$\epsilon(m,\omega)=0$$
 if $v\notin \cup C_i$

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Orientable case

▶ Now suppose, $v \in C_i$, and ω is given by f_1, \ldots, f_d .

So,
$$m = (f_1, \ldots, f_d) + m^2$$
.

Note (f_1, \ldots, f_d) has an isolated zero at m. Define

$$\epsilon(m,\omega) = index(f_1,\ldots,f_d) \in \mathbb{Z} = H^d(C_i,\mathbb{Z}).$$

Orientable case

- ▶ Suppose (I, ω_I) is a global orientation, where I reduced ideal. So, $I = m_1 \cap \cdots \cap m_r \cap \ldots \cap m_t$, where m_1, \ldots, m_r are real maximal ideals and m_{r+1}, \ldots, m_t are complex maximal ideal.
- ▶ So, there is a surjective lift of $A^d \rightarrow I$ of ω_I .
- ▶ Then, $\epsilon(I, \omega_I)$ is the topological Euler class of the trivial bundle of rank d. So, $\epsilon(I, \omega_I) = 0$.
- ightharpoonup So, ϵ factors through a homomorphism

$$\epsilon: E^d(A,A) \to H^d(M,\mathbb{Z})$$
.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Non-Orientable case

The definition of the homomorphism is similar in the non-orientable case. The index is defined only "modulo 2".

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D.

The tangent bundle on Sⁿ
The Tangent Bundle Vanishing of Chern Classes

On the real Sphere \mathbb{S}^n

► As before, let

$$A_n = \frac{\mathbb{R}[X_0, \dots, X_n]}{(X_0^2 + \dots + X_n^2 - 1)} = \mathbb{R}[x_0, x_1, \dots, x_n]$$

be the algebraic coordinate ring of \mathbb{S}^n with $n \geq 2$.

- We have $E^n(A_n, A_n) = \mathbb{Z}$.
- ▶ The tangent bundle T_n is defined by

$$0 \longrightarrow T_n \longrightarrow A_n^{n+1} \xrightarrow{(x_0,\dots,x_n)} A_n \longrightarrow 0.$$

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

On the real Sphere \mathbb{S}^n

- ▶ If *n* is odd, then $e(T_n) = 0$.
- If n is even, then $e(T_n) = \pm 2$. This is a fully algebraic proof that T_n does not have a free direct summand. This result corresponds to the topological result that the tangent bundle on an even dimensional sphere, does not have a no-where vanishing section.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Vanishing of Chern Classes

For real smooth varieties, deficiencies of the top Chern class, as obstruction class, was considered.

Theorem ([BhatwadekarDasMandal])

Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $d \geq 2$. over the field \mathbb{R} of real numbers. Let $K = \wedge^d(\Omega_{A/\mathbb{R}})$ denote the canonical module. Let P be a projective A-module of rank d and let $\wedge^d(P) = L$. Let M(A) denote the real manifold of A. Assume that the top Chern class $C^d(P) = 0 \in CH^d(X)$.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Continued

Then $P \simeq A \oplus Q$ in the following cases:

- 1. M(A) has no compact connected component.
- 2. For every compact connected component C of the manifoled M(A), $L_C \not\simeq K_C$ where K_C and L_C denote restriction of (induced) line bundles on M(A) to C.
- 3. *n* is odd.

The obstruction theorem Real Affine Varieties Topological Obstruction theory The Homomorphism The assignment Q.E.D. The tangent bundle on Sⁿ The Tangent Bundle Vanishing of Chern Classes

Continued

Moreover, if d is even and L is a rank 1 projective A-module such that there exists a compact connected component C of M(A) with the property that $L_C \simeq K_C$, then there exists a projective A-module P of rank d such that $P \oplus A \simeq L \oplus A^{d-1} \oplus A$ (hence $C^d(P) = 0$) but P does not have a free summand of rank 1.

Preview: Low co-dimension case

- ► The definition of $E^r(A, L)$ was given above, for integers $0 < r < d = \dim A$.
- ► For co-dimension r < d, theory is not as satisfactory,in the ideal theoretic approach. However, K—theoretic approach seems very complete.
- Among the deficiencies, is the failure to give a definition of the obstruction classes e(P) for projective A—modules of rank r < d.

Whitney class homomorphism

Theorem ([MandalYang 2010])

Suppose P is a projective A-module of rank $r \leq d = \dim A$ Let L, L' is a projective A-module of rank one. Let Q be a projective A-module rank n and $\chi: L \xrightarrow{\sim} \wedge^n Q$ be an orientation. Then,

a Whitney class homomorphism was defined:

$$w(Q,\chi): E^{d-r}(A,L) \to E^d(A,LL').$$

• If $Q \approx Q_0 \oplus A$, then $w(Q, \chi) = 0$.

the Definition of $w(Q, \chi)$

The homomorphism $w(Q, \chi)$ is given as follows:

- Write $F_k = L \oplus A^{k-1}$, $F'_k = L' \oplus A^{k-1}$.
- Let I be an ideal of height d-n and

$$\omega: F'_{d-n}/IF'_{d-n} \rightarrow I/I^2$$

be local L'-orientation.

► There is an ideal $\tilde{I} \subseteq A$ with $height(\tilde{I}) \ge d$ and a surjective homomorphism $\psi : Q/IQ \rightarrow \tilde{I}/I$.

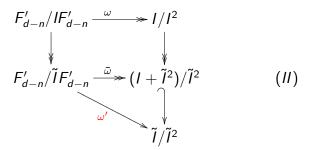
- ► There is an isomorphism $\gamma: F_n/\tilde{l}F_n \stackrel{\sim}{\to} Q/\tilde{l}Q$ that is compatibale with the orientation χ .
- Let $\beta = \bar{\psi}\gamma$ and $\beta' : F_n/\tilde{I}F_n \to \tilde{I}/\tilde{I}^2$ be a lift of β . The following diagram

$$Q/IQ \longrightarrow Q/\tilde{I}Q \stackrel{\gamma \sim \chi}{\sim} F_n/\tilde{I}F_n$$

$$\downarrow^{\psi} \qquad \qquad \downarrow^{\tilde{\psi}} \qquad \qquad \downarrow^{\beta'} \qquad \qquad (I)$$

$$\tilde{I}/I \longrightarrow \tilde{I}/(I + \tilde{I}^2) \stackrel{\mathcal{F}}{\leftarrow} \tilde{I}/\tilde{I}^2$$

 \blacktriangleright Further, ω induces following



▶ Combining ω' , β' we get a surjective homomorphism

$$\delta = \beta' \oplus \omega' : F_n / \tilde{I} F_n \oplus F'_{d-n} / \tilde{I} F'_{d-n} = \frac{F_n \oplus F'_{d-n}}{\tilde{I} \left(F_n \oplus F'_{d-n} \right)} \twoheadrightarrow \tilde{I} / \tilde{I}^2$$

Now, let $\gamma_0: \frac{LL'\oplus A^{d-1}}{\tilde{I}(LL'\oplus A^{d-1})} \stackrel{\sim}{\to} \frac{F_n\oplus F'_{d-n}}{\tilde{I}(F_n\oplus F'_{d-n})}$ be an isomorphism that is consistent with the natural isomorphism χ_0 :

$$LL' \xrightarrow{\sim} \wedge^d (F_n \oplus F'_{d-n})$$

$$\uparrow^d (LL' \oplus A^{d-1}) \longrightarrow \downarrow^d (LL' \oplus A^{d-1})$$

▶ Let $\Delta = \delta \gamma_0 = (\beta', \omega') \gamma_0$. So, the diagram

$$\frac{F_n \oplus F'_{d-n}}{\tilde{I}(F_n \oplus F'_{d-n})} \xrightarrow{\delta} \tilde{I}/\tilde{I}^2$$

$$\chi_0 \sim \gamma_0 \downarrow \downarrow \qquad \qquad \Delta$$

$$\frac{LL' \oplus A^{d-1}}{\tilde{I}(LL' \oplus A^{d-1})}$$

commutes.

▶ Finally, the association

$$(I,\omega)\mapsto \left(\widetilde{I},\Delta\right)\in E^d(A,LL')$$

The Multiplicative Structure

Theorem ([MandalYang 2010])

► A multiplicative structure:

$$\bigoplus_{r=0}^{d} E^{r}(A,A) \times \bigoplus_{r=0}^{d} E^{r}(A,A) \xrightarrow{\cap} \bigoplus_{r=0}^{d} E^{r}(A,A)$$

is defined, in a natural way.

▶ Suppose *I* ideal of height *r* and *J* is an ideal of height *s*.

$$\omega: F/IF \twoheadrightarrow I/I^2$$
 and $\omega': F'/JF' \twoheadrightarrow J/J^2$

are two local orientations, where $F = A^r, F' = A^s$.

▶ Then, ω, ω' induces a surjective homomorphism

$$\eta: \frac{F \oplus F'}{(I+J)(F \oplus F')} \twoheadrightarrow \frac{(I+J)}{(I+J)^2}$$

▶ If $height(I + J) \ge r + s$, the intersection is defined by

$$(I,\omega)\cap (J,\omega'):=(I+J,\eta)\in E^{r+s}(A,L).$$

The restriction map

Definition ([Mandal Yang 2012]): Let A be a noetherian commutative ring with dim A = d and $J \subseteq A$ be an ideal. Let L be a rank one projective A-module. For integers n, with $2n \ge d+3$, there is a group homomorphism

$$\rho = \rho_J : E^n(A, L) \to E^n\left(\frac{A}{J}, \frac{L}{JL}\right)$$

defined as follows:

- ▶ Write $F = L \oplus A^{n-1}$. Let $\omega : F/IF \twoheadrightarrow I/I^2$ be local L—orientation.
- ▶ Find an ideal I_1 and a local orientation $\omega_1 : F/I_1F \rightarrow I_1/I_1^2$ such that $(I, \omega) = (I_1, \omega_1)$ and $height \left(\frac{I_1 + J}{I}\right) \ge n$.
- ▶ Then, ω_1 induces an orientation β as follows:

$$F/I_1F \xrightarrow{\omega_1} I_1/I_1^2$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{F}{(I_1+J)F} \xrightarrow{\beta} \frac{I_1+J}{I_1^2+J}.$$

Define

$$\rho(I,\omega) = \left(\frac{I_1 + J}{J}, \beta\right) \in E^n\left(\frac{A}{J}, \frac{L}{JL}\right).$$

Some Pull Back

Definition([Mandal Yang 2012]) Let $f : R \to A$ be a ring homomorphisms.

- ▶ Let $n \ge 1$ be a fixed integer.
- ▶ Let *L* be a rank one projective *R*−module and $L' = L \otimes A$.
- Assume f is flat or more generally, that for any ideal I of R, which is locally generated by n elements and height(I) = n, we have $height(IA) \ge n$.

▶ Then, there is a homomorphism

$$f^*: E^n(R, L) \to E^n(A, L')$$
 defined as follows:

- ▶ Write $F = L \oplus R^{n-1}$, $F' = F \otimes A$.
- ▶ Let I be an ideal of R of height n and $\omega : F/IF \rightarrow I/I^2$ be a local L—orientation.
- ▶ Then ω induces a local L'—orientation ω' by the diagram:

$$F/IF \xrightarrow{\omega} I/I^{2}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\frac{F \otimes A}{I(F \otimes A)} \xrightarrow{\omega'} \frac{IA}{I^{2}A}.$$

▶ The association $(I, \omega) \mapsto (J, \omega') \in E^n(A, L')$ defines the pull back homomorphism

$$f^*: E^n(R, L) \longrightarrow E^n(A, L')$$

The Relative groups

Definition([Mandal Yang 2012]) Suppose \mathcal{I} is an ideal of A.

▶ Let $D(A, \mathcal{I})$ be defined by the fiber product diagram:

$$D(A, \mathcal{I}) \xrightarrow{\rho_1} A$$

$$\downarrow q$$

$$A \xrightarrow{q} A \xrightarrow{\overline{A}} A$$

Define the relative Euler class group

$$E^n(A, \mathcal{I}, L) = Kernel(p_1^*).$$

Excision Theorems

Theorem ([Mandal Yang 2012])

Let $A, L, \mathcal{I}, p_1, p_2, q$ be as above and dim A = d. For integers n, assume $2n \ge d + 3$.

Then, the following

$$E^n(A,\mathcal{I},L) \xrightarrow{p_2^*} E^n(A,L) \xrightarrow{q^*} E^n(\tfrac{A}{\mathcal{I}},\tfrac{L}{\mathcal{I}L})$$

is an exact sequence.

Excision: Continued

Theorem ([Mandal Yang 2012])

▶ Further, assume $q:A \twoheadrightarrow \frac{A}{\mathcal{I}}$ has a splitting β and $L=L_0 \otimes_{\beta} A$ for some $\frac{A}{\mathcal{I}}-$ module. Then the following

$$0 \longrightarrow E^{n}(A, \mathcal{I}, L) \xrightarrow{\rho_{2}^{*}} E^{n}(A, L) \xrightarrow{q^{*}} E^{n}(\frac{A}{\mathcal{I}}, L_{0})$$

is an exact sequence.

Excision: Continued

Theorem ([Mandal Yang 2012])

• Further, if β^* is defined, then the following

$$0 \longrightarrow E^{n}(A, \mathcal{I}, L) \xrightarrow{p_{2}^{*}} E^{n}(A, L) \xrightarrow{q^{*}} E^{n}(\frac{A}{\mathcal{I}}, L_{0}) \longrightarrow 0$$

is exact.

Polynomial Rings

Corollary ([Mandal Yang 2012])

- Let R be a commutative ring with dim R = d.
- ▶ Let A = R[X] and $B = R[X, X^{-1}]$.
- ▶ Let L₀ be a projective R—module of rank one.
- Write $L = L_0 \otimes A$, $L' = L_0 \otimes B$.
- Assume that $2n \ge d + 4$.

Then,

► The sequence,

$$0 \longrightarrow E^{n}(A,(X),L) \longrightarrow E^{n}(A,L) \longrightarrow E^{n}(R,L_{0}) \longrightarrow 0$$

is a split exact sequence.

The sequence,

$$0 \longrightarrow E^{n}(B,(X-1),L') \longrightarrow E^{n}(B,L') \longrightarrow E^{n}(R,L_{0}) \longrightarrow$$

is a split exact sequence.

Then,

► Further, if *R* is a regular domain that is essentially of the finite type over an infinite field *k*, then

$$\rho_X : E^n(A, L) \xrightarrow{\sim} E^n(R, L_0)$$

is an isomorphism. In particular, the relative group

$$E^{n}(A,(X),L)=0.$$

- Barge, Jean; Morel, Fabien Groupe de Chow des cycles orients et classe d'Euler des fibrs vectorielss. (French)
 [The Chow group of oriented cycles and the Euler class of vector bundles] C. R. Acad. Sci. Paris Sr. I Math. 330 (2000), no. 4, 28-290.
- Bhatwadekar, S. M.; Das, Mrinal Kanti; Mandal, Satya *Projective modules over smooth real affine varieties*. Invent. Math. 166 (2006), no. 1, 151–184.
- S. M. Bhatwadekar and R. Sridharan, *The Euler class group of a Noetherian ring*, Compositio Math. 122 (2000), 183-222.

- S. M. Bhatwadekar and Raja Sridharan *Projective* generation of curves in polynomialextensions of an affine domain and a question of Nori Invent. math. 133, 161-192 (1998).
- S. M. Bhatwadekar and Raja Sridharan, *The Euler Class* Group of a Noetherian Ring, Compositio Mathematica, **122:** 183-222,2000.
- S. M. Bhatwadekar and Raja Sridharan, On Euler classes and stably free projective modules, Algebra, arithmetic and geometry, Part I, II (Mumbai, 2000), 139–158, TIFR Stud. Math., 16, TIFR., Bombay, 2002.

- S. M. Bhatwadekar and Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine varieties, Invent. math. 133, 161-192 (1998).
- S. M. Bhatwadekar and Manoj Kumar Keshari, A question of Nori: Projective generation of Ideals, K-Theory 28 (2003), no. 4, 329–351.
- Jean Fasel, *Groupes de Chow-Witt*, Mém. Soc. Math. Fr. (N.S.) **113** (2008).
- Jean Fasel, *The Chow-Witt ring*, Documenta Mathematica **12** (2007), 275-312.

- Jean Fasel, THE PROJECTIVE BUNDLE THEOREM FOR I^j-COHOMOLOGY Preprint
- J. Fasel, V. Srinivas, Chow-Witt groups and Grothendick-Witt groups of regular schemes, Advances in Mathematics **221** (2009), 302-329.
- Satya Mandal, Homotopy of sections of projective modules, with an appendix by Madhav V. Nori, J. Algebraic Geom. 1 (1992), no. 4, 639-646.
- Satya Mandal, Complete Intersection and K-Theory and Chern Classes, Math. Zeit. 227, 423-454 (1998).

- Satya Mandal, Projective Modules and Complete Intersections, LNM 1672, Springer (1997), 1-113.
- Satya Mandal, On efficient generation of ideals. Invent. Math. 75 (1984), no. 1, 59–67.
- Morel, F., A¹-homotopy classification of vector bundles over smooth affine schemes, Available at http://www.mathematik.uni-muenchen.de/∼ morel/preprint.html.
- Satya Mandal and M. Pavaman Murthy, *Ideals as* sections of projective modules. J. Ramanujan Math. Soc. 13 (1998), no. 1, 51–62.

- Satya Mandal and Albert J. L. Sheu, *Bott Periodicity* and Calculus of Euler Classes on Spheres, J. Algebra 321 (2009), no. 1, 205–229.
- Satya Mandal and Albert J. L. Sheu, *Obstruction theory in algebra and topology*, J. Ramanujan Math. Soc. 23 (2008), no. 4, 413–424.
- Satya Mandal and Albert J. L. Sheu, *Local Coefficients* and Euler Class Groups, J. Algebra 322 (2009), no. 12, 4295–4330.
- Satya Mandal and Raja Sridharan, Euler Classes and Complete Intersections, J. of Math. Kyoto University, 36-3 (1996) 453-470.

- Satya Mandal and P. L. N. Varma, *On a question of Nori: the local case*, Comm. Algebra 25 (1997), no. 2, 451-457.
- Satya Mandal and Yong Yang Intersection theory of algebraic obstructions JPAA 214(2010) 2279-2293.
- Satya Mandal and Yong Yang Excision in Algebraic Obstruction Theory, JPAA 216 (2012) pp. 2159-2169.
- Milnor, John W.; Stasheff, James D. *Characteristic classes*. Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. vii+331 pp.

- N. Mohan Kumar and M. P. Murthy, Algebraic cycles and vector bundles over affine three-folds. Ann. of Math. (2) 116 (1982), no. 3, 579–591.
- N. Mohan Kumar, *Stably Free Modules*, Amer. J. of Math. **107** (1985), no. 6, 1439–1444.
- N. Mohan Kumar, Some theorems on generation of ideals in affine algebras, Comment. Math. Helv. **59** (1984), 243-252.
- M. P. Murthy, Zero cycles and projective modules, Ann. Math. **140** (1994), 405-434.

- M. P. Murthy, A survey of obstruction theory for projective modules of top rank. Algebra, K-theory, groups, and education (New York, 1997), 153–174, Contemp. Math., 243, Amer. Math. Soc., Providence, RI, 1999.
- Yang, Yong Homology sequence and excision theorem for Euler class group. Pacific J. Math. 249 (2011), no. 1, 237-254
- Serre, J.-P. Modules projectifs et espaces fibrés àfibre vectorielle. (French) 1958 Séminaire P. Dubreil, M.-L. Dubreil-Jacotin et C. Pisot, 1957/58, Fasc. 2, Exposé 23 18 pp. Secrétariat mathématique, Paris

- Serre, Jean-Pierre Faisceaux algebraiques coherents. (French) Ann. of Math. (2) 61, (1955). 197–278.
- N. E. Steenrod, The Topology of Fibre Bundles, Princeton University Press, 1951.
- Suslin, A. A. *Projective modules over polynomial rings are free.* (Russian) Dokl. Akad. Nauk SSSR 229 (1976), no. 5, 1063–1066.
- Swan, Richard G. Vector bundles and projective modules. Trans. Amer. Math. Soc. 105 1962 264–277.
- Swan, Richard G. Vector bundles, projective modules and the K-theory of spheres. Algebraic topology and

algebraic K-theory (Princeton, N.J., 1983), 2, Ann. of Math. Stud., 113, Princeton Univ. Press, Princeton, NJ, 1987.

 \blacksquare R. G. Swan, K-theory of quadric hypersurfaces, Annals of Math, 122 (1985), 113-153.