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Localization

By the Universal Property
Multiplicative System
Construction of S~1C

Definition

Let S be a collection of morphisms in a category C. A
localization of C with respect to S
» is a category S~1C with a functor g : C — S7IC >
» q(s) is an isomorphism for all s € S.
» Given any functor f : C — D such that f(s) is an
isomorphism for all s € S, there is a unique functor
g : S71C — D such that gg = f are naturally
equivalent. Diagrammatically:

c—% S—1c commutes up to natural equivalence.
|
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v
D

Satya Mandal, U. Kansas IISER, Pune Inverting Arrows and Derived Categories



Localization

By the Universal Property
Multiplicative System
Construction of S~1C

Existance, uniqueness and comments

Existence is of S71C is not guaranteed.

v

If exists, any two localizations are naturally equivalent.

v

v

Obvious examples are our usual localization S~ A of
commutative rings A along multiplicative sets S.
Remark. The defintion of localization did not require
that S is closed under isomorphisms.

v
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Localization

By the Universal Property
Multiplicative System
Construction of S—1C

Multiplicative System: Prelude

Suppose f : X — Y, t: X — Z,s: W — Y be
morphisms in C, with s, t € S. Required to define morphisms

ftlsifes'c: z<-x, X—tsy

NN

Y w

» Question: What would be the relationship between the
collections {ft=1}, {s71f} of "left, right fractions”? Are
they same, disjoint or none?

» Define "multiplicative systems” S, so that
{ft71} = {s71f} are same.
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Localization
By the Universal Property
Multiplicative System
Construction of S—1C

Definition

A collection S of morphisms in a category C is called a
multiplicative system, if the following three (four) conditions
hold:
» (Closure): If s,t € S are composable then st € S.
» (Ore Condition): Suppose morphisms g, t be given,
with t € S. Then, there are morphisms s, f with s € S
such that the diagram

f
->7 commute
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Localization

By the Universal Property
Multiplicative System
Construction of S—1C

Continued

» (Ore Condition: Continued): The symmetric condition
also holds: Suppose morphisms . 1) be given, with
1 € S. Then, there are morphisms 7, 8 with # € S such
that the diagram

A £, B commute

\
PleS ples

y
C—§>D

(Ore condition ensures {ft™'} = {s7'f}.)
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Localization

By the Universal Property
Multiplicative System
Construction of S—1C

Continued

» (Cancellation): For morphisms f,g: X — Y
sf =sg for some s € S <= ft =st for some tcS.

If Morc(*,*) have group structures then cancellation
means

sf =0 forsome s€S<«<= ft=0 for some tecS.

» (Identity): For all objects X € C, the identity 1x € S.
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Localization

By the Universal Property
Multiplicative System
Construction of S™1C

Left and Right Fractions

Suppose S is a multiplicative system in C.

» By a left fraction fs~! we mean a chain C:

fol.X<>—7-—T~y where scS.

» Let LF(C,S) be the collection of all left fractions.
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Localization

By the Universal Property
Multiplicative System
Construction of S™

Equivalence of Fractions

Two left fractions fs~%, gt™1 : X — Y are defined to be
equivalent, if there is another left fraction =1 : X — Y so
that the diagram

0N

x<l-z- %~

\wv %

» This is an equivalence relation on LF(C, S).

commutes for some u,v.
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Localization

By the Universal Property
Multiplicative System
Construction of S™1C

Composition of Fractions

Let gs1: X — Y, ft71: Y — Z be two left fractions. Use
Ore Condition and complete the commutative diagram:

W-">~B-—F~7 Here ves.
|
" it
y
X%AT‘Y

Define composition (ft 1) (gs ™) := (fu)(sv) ™t

» Compostion is well defined upto equivalence.
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Localization

By the Universal Property
Multiplicative System
Construction of S™1C

The Category S~IC

Let S be a multiplicative system in a (small) category C. Let
S71C be the category defined as follows:

» The objects of S7IC are same as the objects of C.
» For objectes X, Y, let

Mors-10(X, Y) := set of equivalence class of left fractions
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Localization

By the Universal Property
Multiplicative System
Construction of S™1C

Existance Theorem of Gabriel-Zisman

» Define the "universal Functor” q:C — S~C as follows
» For objects X € C, let g(X) = X.
» For a morphism f : X — Y € C define

af) = FIgh): X 2=x >y

» Theorem. For a multiplicative system S in a category
C localization S~IC exists.

» Namely, the functor g has the universal property of
localization.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

Categories of Modules

Let A be a noetherian commutative ring with dim A = d. We
use the notation A for the following categories.
» Let A = M(A) = FGM(A) be the category of finitely
generated A—modaules.

» Let A = FL(A) be the category of finitely generated
A—modules with finite length.

» More generally, for inntegers r > 0, let be A = F(A, r)
the category of finitely generated A—modules M with

codim(Supp(M)) > k; i.e. Height(Ann(M)) > r.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

Abelian Categories

These " A"s are abelian categories. This means

» A has a zero.

v

Hom(M, N) have abelian group structures.

v

A is closed under finite product, kernel and cokernel.

v

Every injective morphism is kernel of its cokernel.

» Every surjective morphism is cokernel of its kernel.

We will consider only the above abelian categories of modules.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

The category Ch(.A)

Let A be an abelian category as above.
» Then, Ch(A) will denote the category of chain complexes
defined as follows:

» The objects in Ch(A) are the chain complexes of objects
in A).

» For A., B € Ch(A), the morphisms HomCh(A)(A., B.)
is defined to be the group of chain complex maps.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

The category K(.A)

The category K(.A) is defined as follows:

» Objects of K(.A) are same as that of Ch(.A).
» For A,, B. € K(A), the morphisms are defined as

H A.. B.
Homg . (As, B.) = omcn(a)( )

~J

where ~ denotes the homotopy equivalence.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

Subcategories of Ch(.A) and K(.A)

» Ch?(A) will denote the "full subcategory” of Ch(A)
consisting of bounded complexes.

» Similarly, K?(A) will denote the " full subcategory” of
K(A) consisting of bounded complexes.

» Similar other such subcategories are defined.
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Derived Category The Abelian Categories

Categories of chain complexes
The Derived Category D(.A)

The Derived Category D(.A)

Definition (see [W])
Let A be a (small) abelian category, as above.
> A morphism ¢ : P — Qs € K(A), is said to be a
quasi-isomorphism, if H'(¢) is an isomorphism, V i.
» Let S be the set of all quasi-isomorphisms in K(.A).
Then, S is a multiplicative system in K(.A).
» The Derived Category D(.A) is defined to be the
localization ST1K(A).
» Likewise, we define the derived category D?(.A) of

bounded chain complexes is defined to be the localization
T1KP(A), where T is set of all quasi-isomorphisms in
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Some Fundamental Properties of Ch(.A) Shift or Translation in Ch(.A)
Cones in Ch(.A)

Shift or Translation in Ch(.A)

» Given an object P, € Ch(A), let (Ps[—1]), = P,_1.
Then, P,[—1] is an object in Ch(A).

» Also, define
T : Ch(A) — Ch(A) by sending P, +— P,[—1].

Then, T is an equivalence of categories.
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Some Fundamental Properties of Ch(.A) Shift or Translation in Ch(.A)
Cones in Ch(.A)

Cone Constrution

Suppose v : P, — @, is a map of chain complexes:

dP
A n+1*>Pn*n>Pn71H"'

i Uny1 l Up \L Un—1
CIQ

= Q1 = Q> Qnr ——

» Define C, = P,_1 ® Q,.
» Let9,:C, — Cp_1 = P,_2® Q,_1 be

w= (20 )
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Some Fundamental Properties of Ch(.A) Shift or Translation in Ch(.A)
Cones in Ch(.A)

Continued: Cone Constrution

>

Then C, is an object in Ch(.A) (i. e. a chain complex).
C. is called the cone of u; also denoted by C,(u).

v

v

For each n there is an exact sequence

0 Qn Cn Pnfl 0

v

This induces an exact sequence

0 Qo Co Po[_]-]*>0

T(P.)
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Some Fundamental Properties of Ch(.A) Shift or Translation in Ch(.A)
Cones in Ch(.A)

Triangles in Ch(.A)

» The above leads to a long chain (not exact):

Pe —— Q. Co(v)
—— T(P) L T(Q) —> T(Cu(u) — -~

» Such a chain is called (a jargon) a triangle and
diagramatically represented as:

G OR P,—=Q,——C,—* TP,

IZEaN
; Q.

P.
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Goal
The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation
Axiom TR3: Morphisms

Axiom TR4: Octahedron

Triangulated Categories K(.A), D(.A)

» We define and establish that K(.A), D(A) are
Triangulated Categories.

» In fact, the definition is abstraction of some of the
properties of K(.A), D(A).
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms

Axiom TR4: Octahedron

The definition if Aed Categories

Definition
(see [W, 10.2.1]) A Triangulated Category K conisists of the
following
» It is an additive category K.
» K is equipped with a natural equivalence T : K = K, to
be called the translation functor.
» K is also equipped with a distinguished family of triangles
(u, v, w) of morphisms in K, to be called exact triangles.

» The translation and the exact triangles satisfies the
following axioms (TR1-4).
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms

Axiom TR4: Octahedron

Morphism of exact triangles

Before we give the axioms, we define morphisms of triangles.

» A morphism between two triangles (u, v, w), (v, v/, w'),
as in the diagram, is a triple (f, g, h) of morphisms in K
such that

TA commutes.
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms

Axiom TR4: Octahedron

Axiom TR1

» Every morphism uv: A— B in K can be embedded
C

v w

inan exact triangle (u,v,w): A—"=B TA
» for all object A € K

1a

A A*O>O*0> TA is an exact A.

» Given an isomorphim of two triangles:
A——=B——=C——=TA

AR

A—>B —>C —>TA

if one line is exact, so is the other one.
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Triangulated Categories

Goal

The Definit
Axiom TR1
Axiom TR2

Axiom TR3:

Axiom TR4

()]

: Rotation
Morphisms
: Octahedron

Axiom TR2: (

» Suppose

A—= B> (X~ is exact.

TA

Then, so are

—Tu

B

and
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms

Axiom TR4: Octahedron

Axiom TR3: (

Given two exact triangles, as in the diagram, and morphisms
f,g, 3 a morphism h,

w

TA commutes.

R

A—>B —>C —>TA
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms
Axiom TR4: Octahedron

Axiom TR4: ( )

The Octahedron axiom states how triangles over two
morhisms u, v and the composition uv must interact.

» Suppose, two morphisms u, v are given. Consider
triangels over u, v, w := vu as in the diagram:
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Goal

The Definition

Axiom TR1
Triangulated Categories Axiom TR2: Rotation

Axiom TR3: Morphisms

Axiom TR4: Octahedron

Continued: (

Vi

V2

TY

» By TR1, thereis f : U — W to fill in. The Contention
is V will also sit below f : U — W.
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Triangulated Categories

Goal

The Definition

Axiom TR1

Axiom TR2: Rotation
Axiom TR3: Morphisms
Axiom TR4: Octahedron

Continued: (

Foramally, 3 f, g that completes the following diagram:

u

uy

X Y U—2-TX  commutes.
|
\
XL W—>TX
|
vi | 8 iTu
\ Vo
V=———V—"—TY
V2 l(T(ul)vg
TY?TU

» The third vertical line is also exact.
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K(.A) Category
The Derived Category D(.A)

Back to Category of Complexes

K(A) is Triangulated

Theorem
K(A) is a Triangulated category.
» Given an object in P, € K(.A), define translation
TP, := P,[—1].
» A triangle (u, v, w) is declaired exact, if it is isomorphic
to the cone of a morphism v : P, — Q, € K(A).
Diagramtically:

A——=B—Y>C—">TA commutes.

N

P.—> Q. — C[fl. — TP,
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K(.A) Category
The Derived Category D(.A)
Back to Category of Complexes

D(.A) is Triangulated

Theorem
D(A) is a Triangulated category.

The triangulated structure is inherited from K(.A).
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Proof that K(.A) is Aed
Exact Categories and their Derieved Categories

Added to the talk

» Only thing needs to tbe checked is that
A=——A—>0—>TA s anexact A.

» Let C be the cone of the identity map 14 : A = A.
Consider the diagram

A=—A——C——=TA

l

A=—A——>0—>TA

» Now C is Homotopic to 0. (Routine Checking.)
» All the rectangles commute. (Routine Checking)
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Proof that K(.A) is Aed
Exact Categories and their Derieved Categories

Added to the talk

Derived Categories of Exact Categories

Suppose £ is an exact category.

» The homotopy category K(&) and the Derive category
D(E) are defined as above.

» Everything said above works for K(€) and D(€&).

» Let P(A) be the category of finitely generated projective
A—modules. Then, P(A) is an exact category.

» The Derived category D(P(A)) is a triangulated category.
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Proof that K(.A) is Aed

Exact Categories and their Derieved Categories

Added to the talk

@ Weibel, Charles A. An introduction to homological
algebra. Cambridge Studies in Advanced Mathematics,
38. Cambridge University Press, Cambridge, 1994.
xiv+450 pp.

@ PAUL BALMER, Triangular Witt Groups Part I: The
12-Term Localization Exact Sequence, K-Theory 19:
3117-63, 2000
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