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Goals

▶ We will define determinant of SQUARE matrices,
inductively, using the definition of Minors and cofactors.

▶ We will see that determinant of triangular matrices
is the product of its diagonal elements.
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Overview of the definition

▶ Given a square matrix A, the determinant of A will be
defined as a scalar, to be denoted by det(A) or |A|.

▶ We define determinant inductively. That means, we first
define determinant of 1× 1 and 2× 2 matrices. Use this
to define determinant of 3× 3 matrices. Then, use this to
define determinant of 4× 4 matrices and so.
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Determinant of 1× 1 and 2× 2 matrices

▶ For a 1× 1 matrix A = [a] define det(A) = |A| = a.

▶ Let

A =

(
a b
c d

)
define det(A) = |A| = ad − bc .
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Example 1

Let

A =

(
2 17
3 −2

)
then det(A) = |A| = 2∗(−2)−17∗3 = −53

Satya Mandal Chapter 5 §5.2 B System of 1st linear ODE Determinant of a Matrix



Preview
The Determinant of a SQUARE Matrix

More Probelms

Determinant of 1 × 1 and 2 × 2 matrices
Minors and Cofactors of 3 × 3 matrices
Determinant of 3 × 3 matrices
Determinant, Minors and Cofactors of all square Matrices
Minors of n × n Matrices
Triangular Matrices
Determinant of tirangualr matrices

Example 2

Let

A =

(
3 27
1 9

)
then det(A) = |A| = 3 ∗ 9− 1 ∗ 27 = 0.
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Minors of 3× 3 matrices

Let

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


Then, the Minor Mij of aij is defined to be
the determinant of the 2× 2 matrix obtained by
deleting the i th row and j th column.
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For example

M22 =

∣∣∣∣∣∣
a11 a13

a31 a33

∣∣∣∣∣∣ =
∣∣∣∣ a11 a13
a31 a33

∣∣∣∣
Like wise

M11 =

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ ,M23 =

∣∣∣∣ a11 a12
a31 a32

∣∣∣∣ ,M32 =

∣∣∣∣ a11 a13
a21 a23

∣∣∣∣ .
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Cofactors of 3× 3 matrices

Let A the 3× 3 matrix as in the above frame.
Then the Cofactor Cij of aij is defined,
by some sign adjustment of the minors, as follows:

Cij = (−1)i+jMij

So,


C11 = (−1)1+1M11 = M11 = a22a33 − a23a33
C23 = (−1)2+3M23 = −M23 = −(a11a32 − a12a31)
C32 = (−1)3+2M32 = −(a11a23 − a13a21).
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Determinant of 3× 3 matrices

Let A be the 3× 3 matrix as above.
Then the determinant of A is defined by

det(A) = |A| = a11C11 + a12C12 + a13C13

This definition may be called
”definition by expansion by cofactors, along the first row”. It
is possible to define the same by expansion by 2nd , or 3rd row.
It can be dome by expansion by any columns,
by improvisation of the same formula.
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Example 3

Let

A =

∣∣∣∣∣∣
2 1 1
3 −2 0
−2 1 1

∣∣∣∣∣∣
Compute the minor M11,M12,M13, the cofactors C11,C12,C13

and the determinant of A.

Satya Mandal Chapter 5 §5.2 B System of 1st linear ODE Determinant of a Matrix



Preview
The Determinant of a SQUARE Matrix

More Probelms

Determinant of 1 × 1 and 2 × 2 matrices
Minors and Cofactors of 3 × 3 matrices
Determinant of 3 × 3 matrices
Determinant, Minors and Cofactors of all square Matrices
Minors of n × n Matrices
Triangular Matrices
Determinant of tirangualr matrices

Solution:

Then minors

M11 =

∣∣∣∣ −2 0
1 1

∣∣∣∣ ,M12 =

∣∣∣∣ 3 0
−2 1

∣∣∣∣ ,M13 =

∣∣∣∣ 3 −2
−2 1

∣∣∣∣
Or

M11 = −2, M12 = 3, M13 = −1
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Continued

So, the cofactors

C11 = (−1)1+1M11 = −2, C12 = (−1)1+2M12 = −3,

C13 = (−1)1+3M13 = −1

So,

|A| = a11C11+a12C12+a13C13 = 2∗(−2)+1∗(−3)+1∗(−1) = −8
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Inductive process of definition

▶ We defined determinant of size 3× 3, using the
determinant of 2× 2 matrices.

▶ Now we can do the same for 4× 4 matrices. This means
first define minors, which would be determinant of 3× 3
matrices. Then define Cofactors by adjusting the sign of
the Minors.Then, use the cofactors fo define the
determinant of the 4× 4 matrix.

▶ Then we can define minors, cofactors and determinant of
5× 5 matrices. The process continues.
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Minors of n × n Matrices

We assume that we know how to define determiant of
(n − 1)× (n − 1) matrices. Let

A =


a11 a12 a13 · · · a1n
a21 a22 a13 · · · a2n
a31 a32 a33 · · · a3n
· · · · · · · · · · · · · · ·
an1 an2 an3 · · · ann


be a square matrix of size n × n. The minor Mij of aij is
defined to be the determinant of the (n − 1)× (n − 1) matrix
obtained by deleting the i th row and j th column.
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Cofactors and Detarminant of n × n Matrices

Let A be a n × n matrix.

▶ Define

Cij = (−1)i+jMij which iscalled the cofactor of aij .

▶ Define

det(A) = |A| =
n∑

j=1

a1jC1j = a11C11+a12C12+· · ·+a1nC1n

This would be called a definiton by expasion by cofactors,
along first row.
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Alternative Method for 3× 3 matrices:

A =

 a11 a12 a13
a21 a22 a23
a31 a32 a33


Form a new 3× 5 matrix by adding 1st , 2nd column to A:

a11 a12 a13 a11 a12
a21 a22 a23 a21 a22
a31 a32 a33 31 a32
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Continued

Then |A| can be computed as follows:

▶ add the product of all three entries
in the three left to right diagonals.

▶ add the product of all three entries
in the three right to left diagonals.

▶ Then, |A| is the difference.
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Definition.

Definitions. Let A be a n × n matrix.

▶ We say A is Upper Triangular matrix, all entries of A
below the main diagonal (left to right) are zero. In
notations, if aij = 0 for all i > j .

▶ We say A is Lower Triangular matrix, all entries of A
above he main diagonal (left to right) are zero. In
notations, if aij = 0 for all i < j .
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Theorem

Theorem Let A be a triangular matrix of order n.
Then |A| is product of the main-diagonal entries. Notationally,

|A| = a11a22 · · · ann.

Proof. The proof is easy when n = 1, 2. We prove it when
n = 3. Let use assume A is lower triangular. So,

A =

 a11 0 0
a21 a22 0
a31 a32 a33


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Continued

We expand by the first row:

|A| = a11C11 + 0C12 + 0C13 = a11C11

= a11(−1)1+1

∣∣∣∣ a22 0
a32 a33

∣∣∣∣ = a11a22a33

For upper triangular matrices, we can prove similarly, by
column expansion. For higher order matrices, we can use
mathematical induction.
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Example

Compute the determiant, by expansion by cofactors, of

A =

 2 −1 3
1 4 4
1 0 2


Solution.

▶ The cofactors

C11 = (−1)1+1

∣∣∣∣ 4 4
0 2

∣∣∣∣ = 8,C12 = (−1)1+2

∣∣∣∣ 1 4
1 2

∣∣∣∣ = 2
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▶

C13 = (−1)1+3

∣∣∣∣ 1 4
1 0

∣∣∣∣ = −4

▶ So, |A| = a11C11 + a12C12 + a13C13 =

2 ∗ 8 + (−1) ∗ 2 + 3 ∗ (−4) = 2
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Example

Let A =


3 7 −3 13
0 −7 2 17
0 0 4 3
0 0 0 5

 Compute det(A).

Solution. This is an upper triangular matrix. So, |A| is the
product of the diagonal entries. So

|A| = 3 ∗ (−7) ∗ 4 ∗ 5 = −420.
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Example

Solve

∣∣∣∣ x + 3 1
−4 x − 1

∣∣∣∣ = 0

Solution. So,

(x + 3)(x − 1)− 1 ∗ (−4) = 0 or x2 + 2x + 1 = 0

(x + 1)2 = 0 or x = −1.
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