Chapter 5 $\S 5.2$ B System of 1^{st} linear ODE Determinant of a Matrix

Satya Mandal

U. Kansas

Arrowtic K-Theory
Fall 2025

Goals

- ► We will define determinant of SQUARE matrices, inductively, using the definition of Minors and cofactors.
- ► We will see that determinant of triangular matrices is the product of its diagonal elements.

Overview of the definition

- ▶ Given a square matrix A, the determinant of A will be defined as a scalar, to be denoted by det(A) or |A|.
- We define determinant inductively. That means, we first define determinant of 1×1 and 2×2 matrices. Use this to define determinant of 3×3 matrices. Then, use this to define determinant of 4×4 matrices and so.

Determinant of 1×1 and 2×2 matrices

- For a 1×1 matrix A = [a] define det(A) = |A| = a.
- ► Let

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 define $det(A) = |A| = ad - bc$.

Example 1

Let

$$A = \begin{pmatrix} 2 & 17 \\ 3 & -2 \end{pmatrix}$$
 then $det(A) = |A| = 2*(-2)-17*3 = -53$

Example 2

Let

$$A = \begin{pmatrix} 3 & 27 \\ 1 & 9 \end{pmatrix}$$
 then $det(A) = |A| = 3 * 9 - 1 * 27 = 0$.

Minors of 3×3 matrices

Let

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Then, the **Minor** M_{ij} of a_{ij} is defined to be the determinant of the 2×2 matrix obtained by deleting the i^{th} row and j^{th} column.

For example

$$M_{22} = \left| \begin{array}{cc} a_{11} & a_{13} \\ a_{31} & a_{33} \end{array} \right| = \left| \begin{array}{cc} a_{11} & a_{13} \\ a_{31} & a_{33} \end{array} \right|$$

Like wise

$$M_{11} = \left| \begin{array}{cc} a_{22} & a_{23} \\ a_{32} & a_{33} \end{array} \right|, M_{23} = \left| \begin{array}{cc} a_{11} & a_{12} \\ a_{31} & a_{32} \end{array} \right|, M_{32} = \left| \begin{array}{cc} a_{11} & a_{13} \\ a_{21} & a_{23} \end{array} \right|.$$

Cofactors of 3×3 matrices

Let A the 3 \times 3 matrix as in the above frame. Then the **Cofactor** C_{ij} of a_{ij} is defined, by some sign adjustment of the minors, as follows:

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$So, \begin{cases} C_{11} = (-1)^{1+1} M_{11} = M_{11} = a_{22} a_{33} - a_{23} a_{33} \\ C_{23} = (-1)^{2+3} M_{23} = -M_{23} = -(a_{11} a_{32} - a_{12} a_{31}) \\ C_{32} = (-1)^{3+2} M_{32} = -(a_{11} a_{23} - a_{13} a_{21}). \end{cases}$$

Determinant of 3×3 matrices

Let A be the 3×3 matrix as above. Then the **determinant** of A is defined by

$$\det(A) = |A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

This definition may be called "definition by expansion by cofactors, along the first row". It is possible to define the same by expansion by 2^{nd} , or 3^{rd} row. It can be dome by expansion by any columns, by improvisation of the same formula.

Example 3

Let

$$A = \left| \begin{array}{ccc} 2 & 1 & 1 \\ 3 & -2 & 0 \\ -2 & 1 & 1 \end{array} \right|$$

Compute the minor M_{11} , M_{12} , M_{13} , the cofactors C_{11} , C_{12} , C_{13} and the determinant of A.

Solution:

Then minors

$$M_{11} = \left| \begin{array}{cc} -2 & 0 \\ 1 & 1 \end{array} \right|, M_{12} = \left| \begin{array}{cc} 3 & 0 \\ -2 & 1 \end{array} \right|, M_{13} = \left| \begin{array}{cc} 3 & -2 \\ -2 & 1 \end{array} \right|$$

Or

$$M_{11} = -2$$
, $M_{12} = 3$, $M_{13} = -1$

Continued

So, the cofactors

$$C_{11} = (-1)^{1+1} M_{11} = -2, \quad C_{12} = (-1)^{1+2} M_{12} = -3,$$

$$C_{13} = (-1)^{1+3} M_{13} = -1$$

So,

$$|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = 2*(-2) + 1*(-3) + 1*(-1) = -8$$

Inductive process of definition

- ▶ We defined determinant of size 3×3 , using the determinant of 2×2 matrices.
- Now we can do the same for 4 × 4 matrices. This means first define minors, which would be determinant of 3 × 3 matrices. Then define Cofactors by adjusting the sign of the Minors. Then, use the cofactors fo define the determinant of the 4 × 4 matrix.
- ► Then we can define minors, cofactors and determinant of 5 × 5 matrices. The process continues.

Determinant, Minors and Cofactors of all square Matrices Minors of $n \times n$ Matrices Triangular Matrices Determinant of tirangualr matrices

Minors of $n \times n$ Matrices

We assume that we know how to define determiant of $(n-1)\times(n-1)$ matrices. Let

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} \\ a_{21} & a_{22} & a_{13} & \cdots & a_{2n} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} \end{pmatrix}$$

be a square matrix of size $n \times n$. The **minor** M_{ii} of a_{ii} is defined to be the determinant of the $(n-1) \times (n-1)$ matrix obtained by deleting the i^{th} row and j^{th} column.

Cofactors and Detarminant of $n \times n$ Matrices

Let A be a $n \times n$ matrix.

Define

$$C_{ij} = (-1)^{i+j} M_{ij}$$
 which is called the **cofactor** of a_{ij} .

Define

$$det(A) = |A| = \sum_{j=1}^{n} a_{1j} C_{1j} = a_{11} C_{11} + a_{12} C_{12} + \dots + a_{1n} C_{1n}$$

This would be called a definition by expasion by cofactors, along first row.

Alternative Method for 3×3 matrices:

$$A = \left(\begin{array}{ccc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Form a new 3×5 matrix by adding 1^{st} , 2^{nd} column to A:

$$a_{11}$$
 a_{12} a_{13} a_{11} a_{12}
 a_{21} a_{22} a_{23} a_{21} a_{22}
 a_{31} a_{32} a_{33} a_{31} a_{32}

Continued

Then |A| can be computed as follows:

- add the product of all three entries in the three left to right diagonals.
- add the product of all three entries in the three right to left diagonals.
- ▶ Then, |A| is the difference.

Definition.

Definitions. Let A be a $n \times n$ matrix.

- We say A is Upper Triangular matrix, all entries of A below the main diagonal (left to right) are zero. In notations, if $a_{ii} = 0$ for all i > j.
- We say A is Lower Triangular matrix, all entries of A above he main diagonal (left to right) are zero. In notations, if $a_{ij} = 0$ for all i < j.

Theorem

Theorem Let A be a triangular matrix of order n. Then |A| is product of the main-diagonal entries. Notationally,

$$|A|=a_{11}a_{22}\cdots a_{nn}.$$

Proof. The proof is easy when n = 1, 2. We prove it when n = 3. Let use assume A is lower triangular. So,

$$A = \left(\begin{array}{ccc} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{array}\right)$$

Continued

We expand by the first row:

$$|A| = a_{11}C_{11} + 0C_{12} + 0C_{13} = a_{11}C_{11}$$

= $a_{11}(-1)^{1+1}\begin{vmatrix} a_{22} & 0 \\ a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33}$

For upper triangular matrices, we can prove similarly, by column expansion. For higher order matrices, we can use mathematical induction.

Example

Compute the determiant, by expansion by cofactors, of

$$A = \left(\begin{array}{ccc} 2 & -1 & 3 \\ 1 & 4 & 4 \\ 1 & 0 & 2 \end{array}\right)$$

Solution.

▶ The cofactors

$$C_{11} = (-1)^{1+1} \begin{vmatrix} 4 & 4 \\ 0 & 2 \end{vmatrix} = 8, C_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 4 \\ 1 & 2 \end{vmatrix} = 2$$

$$C_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 4 \\ 1 & 0 \end{vmatrix} = -4$$

▶ So,
$$|A| = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} =$$

$$2*8+(-1)*2+3*(-4)=2$$

Example

Let
$$A = \begin{pmatrix} 3 & 7 & -3 & 13 \\ 0 & -7 & 2 & 17 \\ 0 & 0 & 4 & 3 \\ 0 & 0 & 0 & 5 \end{pmatrix}$$
 Compute $det(A)$.

Solution. This is an upper triangular matrix. So, |A| is the product of the diagonal entries. So

$$|A| = 3 * (-7) * 4 * 5 = -420.$$

Example

Solve
$$\begin{vmatrix} x+3 & 1 \\ -4 & x-1 \end{vmatrix} = 0$$

Solution. So,

$$(x+3)(x-1) - 1 * (-4) = 0$$
 or $x^2 + 2x + 1 = 0$
 $(x+1)^2 = 0$ or $x = -1$.