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Preview

» We will define determinant of SQUARE matrices,
inductively, using the definition of Minors and cofactors.

» We will see that determinant of triangular matrices
is the product of its diagonal elements.
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Overview of the definition

» Given a square matrix A, the determinant of A will be
defined as a scalar, to be denoted by det(A) or |A|.

» We define determinant inductively. That means, we first
define determinant of 1 x 1 and 2 x 2 matrices. Use this
to define determinant of 3 x 3 matrices. Then, use this to
define determinant of 4 x 4 matrices and so.
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Determinant of 1 X 1 and 2 X 2 matrices

» For a1l x 1 matrix A= [a] define det(A) = |A| = a.
> Let

A= i 2 define det(A) = |A| = ad — bc.
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Example 1

Let

2 17
3 =2

>
Il

then det(A) = |A| = 2%(—2)—17+3 = —53
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Example 2

then det(A) =|A| =3%9—1%27=0.
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Minors of 3 X 3 matrices

Let
a1l d12 a1z
A= a1 dxp ax
d31 d32 as3
Then, the Minor Mj; of a;; is defined to be
the determinant of the 2 x 2 matrix obtained by
deleting the i*" row and j* column.
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For example

an di13
M, — | 911 a13
2 = =
d31 433
asi ass
Like wise
do> a3 a1l 4d12 dil 413
My = , Mz = , Msy =
d32 ass d31 a3z dp1 a3
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Cofactors of 3 X 3 matrices

Let A the 3 x 3 matrix as in the above frame.
Then the Cofactor Cj of aj; is defined,
by some sign adjustment of the minors, as follows:

Gy =(-1)" My
Cu= (—1)1+1M11 = Mi1 = axpass — apzass

So, G = (— )2+3M23 = —My = —(211332 - 312231)
Cso = (—1)*2 M3 = —(a11a03 — a13an).
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Determinant of 3 x 3 matrices

Let A be the 3 x 3 matrix as above.
Then the determinant of A is defined by

det(A) = |A| = a11Gi1 + a12Cio + a13Gis

This definition may be called

" definition by expansion by cofactors, along the first row”. It
is possible to define the same by expansion by 2"/, or 3" row.
It can be dome by expansion by any columns,

by improvisation of the same formula.
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Example 3

Let

-2 1 1

Compute the minor M;;, My», M3, the cofactors Cyq, Ciop, Ci3
and the determinant of A.
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Solution:

Then minors

-2 0 3 0 3 =2

Mll = 1 11 M12 =

Or
Mll - _27 M12 = 37 M13 = -1
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Continued

So, the cofactors
G = (—1)1+1M11 =-2, (Cp= (—1)1+2M12 = -3,

C]_3 - (—1)1+3M13 - —1
So,

|A‘ = a11CG1+anCortanCs = 2*(—2)+1*(—3)—|—1*(—1) = -8
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Inductive process of definition

» We defined determinant of size 3 x 3, using the
determinant of 2 X 2 matrices.

» Now we can do the same for 4 x 4 matrices. This means
first define minors, which would be determinant of 3 x 3
matrices. Then define Cofactors by adjusting the sign of
the Minors. Then, use the cofactors fo define the
determinant of the 4 x 4 matrix.

» Then we can define minors, cofactors and determinant of
5 x 5 matrices. The process continues.
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Minors of n x n Matrices

We assume that we know how to define determiant of
(n—1) x (n— 1) matrices. Let

di1 d12 d13 - dip
dy1 d22 413 - dp
A= az ax a3 -+ az

dpl dn2 dp3 - dnn

be a square matrix of size n x n. The minor Mj; of aj is
defined to be the determinant of the (n — 1) x (n — 1) matrix
obtained by deleting the i*" row and j* column.
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Cofactors and Detarminant of n x n Matrices

Let A be a n X n matrix.
» Define

Cj = (—1)""'M; which iscalled the cofactor of aj.

» Define

det(A) = |A| = Zaljclj = anCutanpCot+--+ainGn

j=1

This would be called a definiton by expasion by cofactors,
along first row.
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Alternative Method for 3 x 3 matrices:

a
A= ani

dsi

di2 413
dy 423
d32 d33

Form a new 3 x 5 matrix by adding 1, 2"¢ column to A:

di1 a1
dy1  a»
d31 432
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Continued

Then |A| can be computed as follows:

» add the product of all three entries
in the three left to right diagonals.

» add the product of all three entries
in the three right to left diagonals.

» Then, |A] is the difference.
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Definition.

Definitions. Let A be a n X n matrix.

» We say A is Upper Triangular matrix, all entries of A
below the main diagonal (left to right) are zero. In
notations, if a; = 0 for all / > j.

» We say A is Lower Triangular matrix, all entries of A
above he main diagonal (left to right) are zero. In
notations, if a; = 0 for all / <.
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Theorem

Theorem Let A be a triangular matrix of order n.
Then |A| is product of the main-diagonal entries. Notationally,

|A| = d114@22 " * * dpp-

Proof. The proof is easy when n =1,2. We prove it when
n = 3. Let use assume A is lower triangular. So,

aii 0 0
A= dp1  dno 0
d31 d32 ds3
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Continued

We expand by the first row:

|A| = a11CG1 +0Gp +0Gi3 = a11 Gy

a 0
— all(_1)1+1 22

= d114224d33
d32 da33

For upper triangular matrices, we can prove similarly, by
column expansion. For higher order matrices, we can use
mathematical induction. [
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More Probelms

Example

Compute the determiant, by expansion by cofactors, of
2 3
A= 1 4 4
1 0 2
Solution.

» The cofactors

Cll _ (_1)1+1 ;" ’ — 87 C12 — (_1)1+2

— =

4
0
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More Probelms

Cis = (-1

1 4
10 ' =
» So, |Al = a1 G+ annGo + ai3Gs =

248+ (—1)*x2+3x(—4)=2
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More Probelms

Example

3 7 -3 13
0 -7 2 17

Let A= 00 4 3 Compute det(A).
0 0 0 5

Solution. This is an upper triangular matrix. So, |A| is the
product of the diagonal entries. So

|A| = 3% (—7) x4 x5 = —420.
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More Probelms

Example

x+3 1

Solve 4 o1

‘:0
Solution. So,
(x+3)(x—1)—1%(—4)=0 or x> +2x+1=0

(x+1)*=0 or x=-1
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