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Homogeneous LSODEs

» Recall the two forms of Homogeneous LSODEs:

{ L(y) =y" +p(t)y' + q(t)y =0 (1)
L(y) = P(t)y" + Q(t)y’ + R(t)y =0

where p(t), q(t), P(t), Q(t), R(t) are functions of t.

» The Trivial Solution: y = 0 is a solution
for any homogeneous linear equation (1)

Satya Mandal Chapter 3 Second Order ODE §3.5 Complex roots of the CE



On complex solutions

Complex solutions to real

Sometimes the equation (1) would have complex solutions,
while we are interested only in real solution.
The following theorem helps.

Theorem 3.5.1: Consider the homogeneous equation (1),
where p(t), q(t) are real valued functions of t.

Let y = o(t) = u(t) + iv(t)

be a complex solution of the ODE (1), where

u(t), v(t) are the real part the imaginary part of y.
Then, both y = u(t), y = v(t) are solutions of (1).
Proof: Use linearity.
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This Section Complex roots of the CE

Complex roots of the CE

Consider a 2"¥-Order Homogeneous linear ODE, with constant
coefficients:

L(y)=ay"+by/+cy=0 abceR (2)
The CE of (2)is: ar’+br+c=0 (3)

» In §3.2, we dealt with the situations,
when (3) had two unequal real roots.

» |n this section, we deal with the case,
when the CE (3) would have complex roots.
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This Section Complex roots of the CE

Continued

» When the CE (3) has complex roots, b*> — 4ac < 0.
The roots are
_ : _ —b+vb2—4ac
{ = A= e Where = V-1
2a

rn=A—ip=

We say, r; and r, are conjugate of each other.
» Asin §3.2 (2) has two solutions:

yi(t) = et = exp[(\ + ip)t] = eMtert
{ ya(t) = e = exp](\ — ip)t] = eMe (4)

» However, (4) involves complex exponentiation e/#f, e =Kt
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This Section Complex roots of the CE

Complex Exponentiation

» For real numbers 6, we define e/’ = cos# + isin 6.
» For complex numbers z = p + i define

e? —ePtil . gPell — e’(cosf + isin0)

» All the rules of exponentiation that you are familiar with
work, with this definition of e?. In particular

e’ = e7e” forall z,w e C.

» Justifications for defining complex exponentiation e* this
way, is dealt with in the Complex Analysis Courses.
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This Section Complex roots of the CE

Solution of (2)

» So the solution (4) of (2) reduces to:

yi1(t) = e*(cos put + isin ut)
At . (5)
yo(t) = eM(cos ut — isin ut)

» By Theorem 3.5.1 both the real and complex parts (of y;
or y») are solution of (2). We get two real solutions:

u(t) = e cos it
{ v(t) = eMsin /jbt (6)
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This Section Complex roots of the CE

Continued

» Define the Wronskian of uand v (of any two functions) as

W (u, v)(t) =

u(t) v(t)
u'(t) V(1)
e cos ut e sin put

A
- ’ e cos ut — eMpusinut  AeMsin put + ey cos ut

cos [t sin ut
Acos put — psinput  Asin put + pcos pt

2Xt

e2)\t e Me
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This Section Complex roots of the CE

Continued

» So, (since i # 0), Wronskian W (u, v)(t) = pe*t # 0.
» So, u, v form a fundamental set of solutions of (2).
» So, the general (real) solution of (2) has the form

A

y = cu(t) + qv(t) = ceMcos ut + ceMsinput  (7)

where ¢, ¢, are arbitrary constants.
» We can write the same as

y = e(cy cos ut + ¢ sin uut) (8)
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This Section Complex roots of the CE

Behavior of the solution

If the CE (3) has complex roots or i # 0, then, the solution
(8) has two factors:

» The exponential factor:
E(t) =M

Depending on the sign of A this part will "blow up" to
oo or "decay" to the x—axis (horizontal asymptote).

» The periodic factor.

2
®(t) = ¢ cos ut + cpsin put with periodicity= il
i
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This Section Complex roots of the CE

» Further,
—(lal +[e]) < o(t) < (Jal +[cl)

The graph of ®(t) contributes to a steady oscillation.
» The behavior of the solution y (as in (8)) will be a

combination of

(1) the exponential rise/decay due to E(t) and

(2) the periodic oscillation due to ®(t).
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This Section Complex roots of the CE

Continued

So, the nature of the solutions is summarized as follows:
» If A\ =0 then the solution would be a steady oscillation.
» If A > 0, it will be unsteady oscillation.
» If A < 0 the oscillation will stabilize with time.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 1

Consider the IVP:

Yy —4y' +8y=0
y(m/8) =0
y'(m/8) = e™/*

» Solve the problem

» Sketch the graph

» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

» The CE: r> —4r+8=0
» Roots of the CE: n =242/, rn=2—2j.
» By solution (8), the general solution

y = eM(cy cos put + ¢y sin put) = e*(cy cos 2t + ¢, sin 2t)

» The answer to the last part: the solution would be an
unsteady oscillation; because the exponential part is €%t
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute
y' = 2e*(c; cos 2t+c, sin 2t)+e* (—2cy sin 2t4-2¢; cos 2t)

Initial value conditions:

y(r/8) = 2em/* (ﬁ + 72) —0
(7T/8) = 2e7r/4 (ﬁ + %) + eﬂ—/4 (—% -+ %) — e7r/4

a+a=0 CIZ_L
do=1 _iﬁ
V22 = Q=35

Satya Mandal Chapter 3 Second Order ODE §3.5 Complex roots of the CE



Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, the solution is

1 1
2t .
y=e (—— cos2t + —=sin Zt)
2V/2 2V/2

» Repeat: y = y(t) has an unsteady/unstable oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t):

y=e?(cos(2t)+sin(2t))/2sqrt2

05 x10°
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 2 (Dampened Oscillation)

Consider the IVP:

y' +4y +5y =0
y(r/4) =2
y/(n/4) = —4

» Solve the problem

» Sketch the graph
» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

>

The CE: r> +4r+5=0
Roots of the CE: n = —-2+i, n=-2—1.
» By solution (8), the general solution

v

y = e(cycos ut + cpsinut) = e (¢ cos t + ¢ sin t)
» The answer to the last part: the solution will be an
stabilized /dampened/ decaying oscillation; because the

exponential part is e~
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute
y = —2e*(cycost+ cysint) +e 2t (—cysint + ¢y cost)
Initial value conditions:
y(m/4) = e ﬂ/z(f+f) 2
y(n/4) =207 (S + %) +e (— %+ %) =4

c+ = 2\/§e“/2 a+ o= 2\/§err/2
—4+e‘“/2( Cf1+f) —4 a=0e
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, ¢ = ¢ = \/2e™/?
» So, the solution is

y=e?"(cicost + csint)

—e 2t <\/§e”/2 cos t 4+ v/2e™? sin t)

= V/2e72+7™/2 (cos t + sin t)

» Repeat: the y = y(t) has stabilized /dampened/ decaying
oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t): The exponential part E(t) = e 2t*7/2

dampens (flattens) the graphs very quickly.

y=sqrt(2)e’2*P"2(cost t+sin t)
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Example 3

Consider the IVP:

y'+9y =0
y(0) =0
y'(0)=1

» Solve the problem
» Sketch the graph

» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Solution

» The CE: r+9=0
» Roots of the CE: b = 3/, n = —3i.
» By solution (8), the general solution

y = eM(cy cos put + ¢ sin pt) = ¢ cos 3t + ¢y sin 3t

» Answer to the last part: the solution will be a
STABLE oscillation; because there is no exponential part.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» Before we use the initial values, compute
y' = =3¢y sin 3t + 3¢, cos 3t

» |nitial value conditions:

y(O) = = 0 1 =
V() =36=1 o=

wik O
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Continued

» So, the solution is

1
y:§sin3t

» Repeat: y = y(t) has an STABLE oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

Graph of y = y(t):

Sample III: Stable Oscillation
0.4 T T T T T T T T T
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples Example 4 (Stable oscillation)

On the Matlab Graph

» It took some trial and error to get a good graph.
» Following commands were used to get this graph:
> t=[0:.01:10];
» y=sin(3*t)/3;
> plot(t,y), title('Sample I11: Stable Oscillation’)
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples  p ample 4 (Stable oscillation)

Example 4

Consider the IVP:

< <
'—l
v+
Il

[ S

<
N
—~~
|_l
N

Il

» Solve the problem
» Sketch the graph
» Describe the nature of the solution, as t — oo
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples  p ample 4 (Stable oscillation)

Solution

» The CE: r* + 12 =0
» Roots of the CE: rp = 7i, n = —i.
» By solution (8), the general solution

y = eM(cycos put 4 ¢y sinput) = ¢ cosmt + ¢y sint

» Answer to the last part: the solution will be a STABLE
oscillation; because there is no exponential part.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples  p ample 4 (Stable oscillation)

Continued

» Before we use the initial values, compute

y' = —meysinmt + wep cos it

» |nitial value conditions:

y(].) = —C = 1 G = -1
Y1) =-re=1 — |g=-1
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)
Example 3 (Stable oscillation)

Examples  p ample 4 (Stable oscillation)

Continued

» So, the solution is
y =ccosnt+ csinmt = —cosmt — —sinTt

™

» Repeat: y = y(t) has an STABLE oscillation.
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Example 1 (unstable oscillation)
Example 2 (Dampened Oscillation)

Example 3 (Stable oscillation)

Examples  p ample 4 (Stable oscillation)

Graph of y = y(t):

y=-cos(pi t)-sin(pi t)/pi
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