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Abstract

In this paper, we prove some theorems about vanishing of Euler class groups. For example, suppose B =
A[X,f −1] where A[X] is a polynomial ring, f ∈ A[X] is a non-zero divisor and dim(B) = dim(A)+1 � 3.
Then we prove that the Euler class group E(B,L) = 0 for any rank one projective B module L.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we prove some results about vanishing of Euler class groups. For smooth affine
algebras over fields, the Euler class group was introduced by M.V. Nori. Subsequently, for any
noetherian commutative ring A and rank one projective modules L the Euler class group E(A,L)

were defined by Bhatwadekar and Raja Sridharan. We will use the definition of Bhatwadekar and
Raja Sridharan [BRS1]. These groups were defined to study obstructions for projective modules
P of top rank (i.e. rank(P ) = dimA) to have a rank one free direct summand.

In Section 3, we prove that for B = A[X,1/f ], where f ∈ A[X] is a non-zero divisor in a
polynomial ring A[X] over a noetherian commutative ring with dim(B) = dim(A) + 1 = n, and
for a line bundle L over Spec(B), the Euler class group E(B,L) = 0. When L = B = A[X], the
theorem is an easy consequence of the proof of the main theorem in [Ma] and needs a serious
proof in this case of localization rings.
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In Section 4, we prove several theorems regarding equivalent conditions, for the Euler class
group to vanish. For example, we prove that if all the cycles in the Cohen–Macaulay locus vanish,
then the Euler class group vanishes. In Section 2, we will discuss some preliminaries.

For the definitions of Euler class groups and weak Euler class groups, the reader is referred
to the paper of Bhatwadekar and Sridharan [BRS1] and for notations to [DM1,DM2]. For a
noetherian commutative ring A with dim(A) = n � 2 and a rank one projective modules L the
Euler class group will be denoted by E(A,L) and the weak Euler class group by E0(A,L).

2. Preliminaries

First, we will recall the following patching lemma of Quillen [Q].

Lemma 2.1. (Quillen [Q].) Let A be a commutative ring and R be an A-algebra. Suppose f ∈ A

and θ be an unit in 1 + T Rf [T ], where R[T ] is the polynomial ring over R in the variable T .

Then there is an integer k, such that for g1, g2 ∈ A, whenever g1 − g2 ∈ f kA, there is a unit ψ

in 1 + f T R[T ] such that ψf (T ) = θ(g1T )θ(g2T )−1.

The following is a version of the patching lemma of Plumstead [P].

Lemma 2.2. (Plumstead [P].) Let A be a commutative noetherian ring and M be an A-module.
Suppose As +At = 1. Let α :Mst → Mst be an isomorphism that is isotopic to the identity. Then
we can find isomorphisms η1 :Mt → Mt and η2 :Ms → Ms such that

• α = (η2)t (η1)s,

• η1 ≡ Id (modulo s),
• η2 ≡ Id (modulo t).

Proof. Since α is isotopic to identity there is an isomorphism

θ(T ) :Mst [T ] ∼−→ Mst [T ]

such that θ(0) = Id and θ(1) = α.

Write R = End(Mt). So, R is an A-algebra. So, θ is an unit in 1 + T Rs[T ]. By 2.1, there
is an integer k � 0 such that for g1, g2 ∈ A, whenever g1 − g2 ∈ skA, there is a unit ψ in
1 + sTEnd(Mt)[T ] such that θ(g1T )θ(g2T )−1 = ψs(T ).

Again taking R′ = End(Ms), we consider θ as an element in 1 + T R′
t [T ]. So, there is

an integer k � 0 such that for g1, g2 ∈ A, whenever g1 − g2 ∈ tkA, there is a unit ψ in
1 + tTEnd(Ms)[T ] such that θ(g1T )θ(g2T )−1 = ψt(T ).

Now we can take the same integer k for both the statements above. We can write 1 = λsk +
μtk. Now

θ(T ) = [
θ(T )θ

(
λskT

)−1][
θ
(
λskT

)
θ(0)−1].

Since 1 − λsk ∈ tkA, there is an unit ψ2 in 1 + tTEnd(Ms)[T ] such that (ψ2)t (T ) =
θ(T )θ(λskT )−1.
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Similarly, since λsk − 0 ∈ skA there is an unit ψ1 ∈ 1 + sTEnd(Mt)[T ] such that (ψ1)s(T ) =
θ(λskT )−1θ(0)−1. Therefore,

θ(T ) = (ψ2)t (T )(ψ1)s(T ).

Substituting T = 1 we have α = (η2)t (η1)s, where ηi = ψi(1), for i = 1,2. This completes
the proof of this lemma. �

The referee suggested the following version of Quillen’s argument [Q] regarding extendibility
of modules.

Proposition 2.3. Let A be a noetherian commutative ring and R = A[X] be the polynomial ring.
Suppose N is a finitely generated R-module and

Q = {s ∈ A: Ns ≈ E ⊗ Rs where E is As-projective}.

Then Q is an ideal.

Proof. Clearly, 0 ∈ Q and as ∈ Q for all a ∈ A and s ∈ Q. So, we need to prove that s, t ∈ Q ⇒
s + t ∈ Q. Assume s, t ∈ Q. We will prove s + t ∈ Q. By replacing A by As+t we may assume
s + t = 1. Write M1 = E1 ⊗ Rs and M2 = E2 ⊗ Rt where E1 is a projective Rs -module and E2
is a projective Rt -module. Let

f1 :M1
∼−→ Ns and f2 :M2

∼−→ Nt

be two isomorphisms and

Θ = (
f −1

2

)
s
(f1)t : (M1)t

∼−→ (M2)s .

Let “overline” denote “modulo X.” Then Θ : (E1)t
∼−→ (E2)s is an isomorphism. Consider the

following two fiber product diagrams:

E0
q2

q1

E2

E1 (E1)t
Θ

(E2)s,

E
p2

p1

M2

M1 (M1)t
Θ

(M2)s .

Clearly, E0 is a projective A-module and E is a projective R-module. Now use standard argu-
ments to show E0 ⊗ R ≈ E ≈ N (see, for example, [Ma1]). This completes the proof. �

We quote the following version of Swan’s Bertini theorem from [BRS2, p. 291].

Theorem 2.4. Let A be a geometrically reduced affine ring over an infinite field and P be a
projective A-module of rank r. Let (α, s) ∈ P ∗ ⊕ A. Then there is an element β ∈ P ∗ such that if
I = (α + sβ)(P ), then:
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(1) Either Is = As or Is is an ideal of height r such that (A/I)s is a geometrically reduced ring.
(2) If r < dimA and As is geometrically integral, then (A/I)s is a geometrically integral.
(3) If As is smooth, then (A/I)s is smooth.
(4) In particular, if J = (a1, . . . , ar , s) is an ideal of A then there exist d1, . . . , dr ∈ A such that

if J = (a1 + sd1, . . . , ar + sdr ), then Is satisfies properties (1)–(3).

The following is the theorem of Grothendieck [EGA, p. 158] on the openness of the Cohen–
Macaulay locus.

Theorem 2.5. (Grothendieck [EGA].) Let A be noetherian commutative ring and M be a finitely
generated A-module. Assume that A is image of a regular ring. Define the map

coDepth : Spec(A) → Z given by coDepth(℘) = dim(M℘) − depth(M℘).

Then coDepth is upper semi continuous. That means, for any ℘0 ∈ Spec(A) there is an open
neighborhood U of ℘0 such that

℘ ∈ U ⇒ coDepth(℘) � coDepth(℘0).

In fact,

U = {
℘ ∈ Spec(A): coDepth(℘) � n

}
is open for all n ∈ Z.

In particular, the Cohen–Macaulay locus CM(A) is non-empty open in Spec(A).

Proof. For the benefit of the reader, we will sketch the proof. Let B be a regular ring and
ϕ :B → A be a surjective homomorphism and Φ : Spec(A) → Spec(B) be the induced map.
Consider M as a B-module.

It is easy to see that the map, coDepth : Spec(A) → Z extends to Spec(B). So, replacing A

by B , we can assume that A is a regular ring.
Since A is regular, we can use Auslander–Buchsbaum formula. It follows that, for ℘ ∈

Spec(A) we have

coDepth(℘) = dim(M℘) − depth(M℘) = projDim(M℘) − [
height(I℘)

]
where I = ann(M).

It is easy to see that, for any integer n ∈ Z the sets

U(n) = {
℘ ∈ Spec(A): projDim(M℘) � n

}
and

V (n) = {
℘ ∈ Spec(A): height(I℘) � n

}
are open. This completes the proof. �
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3. Main results

The following is the main theorem on vanishing of Euler class group of polynomial rings.

Theorem 3.1. Let R = A[X] be a polynomial ring over a commutative noetherian ring A and
B = A[X,1/f ], where f ∈ R is a non-zero divisor. Assume dimB = dimA + 1 � 3. Let L be
rank one projective B-module. Then E(B,L) = 0 and E0(B,L) = 0.

Proof. Since there is a surjective map E(B,L) → E0(B,L), we will only prove E(B,L) = 0.

We also assume that A is reduced [BRS1, Corollary 4.6] and A has no non-trivial idempotent.
We will consider L as an invertible ideal and let L = R ∩L. Write n = dimB. We will write

F = Bn−1 ⊕ L and F = Rn−1 ⊕ L. Let I be a primary ideal of B with height(I) = n and let
ω :F/IF → I/I2 be a local L-orientation of I. We will prove that (I,ω) = 0 in E(B,I).

Let

Q = {s ∈ A: Ls ≈ E ⊗ Rs where E is As-projective}.

By Proposition 2.3, Q is an ideal of A. Since L is an ideal and A is reduced, we have
height(Q) � 1.

Let I = I ∩ R. Note that I is a primary ideal of R with height(I ) = n. So, m0 = √
I is a

maximal ideal of height n. Write

P = {
℘ ∈ Spec(R): I � ℘ and height(℘) < n or Q ⊆ ℘

}
.

So,

P = {
℘ ∈ Spec(R): m0 �= ℘ and height(℘) < n or Q ⊆ ℘

}
.

Note that there is a generalized dimension function d :P → {0,1,2, . . .} such that d(℘) �
n − 1 for all ℘ ∈ P .

Let γ :F → I be any lift of ω.

Let β0 :F → I be such that γ = β0/f
2k. Since (I,ω) = f 2k(I,ω) [BRS1, Lemma 5.4],

replacing ω by f 2kω, we can assume that γ = β0/1.

Note that Hom(F,R)℘ = I 2 Hom(F,R)℘ for all ℘ ∈P .

So, β = β0 + β1 is basic in Hom(F,R) on P for some β1 ∈ I 2 Hom(F,R). Consider the
following commutative diagram

F

β

F/IF
∼ F/IF

ω

I I/I 2 ∼
I/I2.

Therefore, βf is a lift of ω and also I = image(β)+ I 2. So, image(β) = I ∩K for some ideal
K of R with I + K = R, height(Kf ) � n and QRf + Kf = Rf .
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Let ω′ be the local L-orientation on Kf induced by βf . Therefore,

(I,ω) + (Kf ,ω′) = 0.

So, we will prove (Kf ,ω′) = 0. Let

K = K1 ∩ K2 ∩ · · · ∩ Kr ∩ Kr+1 ∩ · · · ∩ Kt

be a irredundant primary decomposition of K, where f /∈ √
Ki for i = 1, . . . , r and f ∈ √

Ki for
i = r + 1, . . . , t. Also note height(Ki) = n for i = 1, . . . , r. We have

(Kf ,ω′) =
r∑

i=1

(
(Ki)f ,ωi

)

where ωi is induced by ω′. So, we will prove ((Ki)f ,ωi) = 0 for i = 1, . . . , r.

Replacing (I,ω) by ((Ki)f ,ωi), we can additionally assume that QRf + If = Rf . Since
I + Rf = R, in fact, we have

QR + I = R.

The diagram above remains valid. By abuse of notation, the map F/IF → I/I 2 will also be
denoted by ω.

Write J = I ∩A. Since I has a monic polynomial, we have Q+J = A. Let ‘overline’ denote
modulo I. Let e1, . . . , en−1 be the standard basis of Rn−1 ⊆ F. Let en = (0, . . . ,0, l) ∈ F be such
that L/IL = (A/I)l = L/IL.

Let f1 ∈ I be such that f1 = ω(e1). We can assume f1 is a monic polynomial. We will pick
f2 ∈ I such that f2 = ω(e2) and for any maximal ideal m, if (J, f1, f2) ⊆ m then I ⊆ m. To
do this, let g2 ∈ I be such that g2 = ω(e2). Let m1, . . . ,mr ,mr+1, . . . ,ml be the maximal ideals
over (J, f1) such that I � mi (that means, mi �= √

I ). Assume g2 /∈ mi for i = 1, . . . , r and
g2 ∈ mi for i = r + 1, . . . , l. Pick λ ∈ I 2 ∩ ⋂r

i=1 mi \ ⋃l
i=r+1 mi. Write f2 = g2 + λ. Now, f2

will satisfy this property.
For i = 3, . . . , n − 1 let fi ∈ I be any lift of ω(ei). Let γ :L → I be any lift of ω|L/IL.

(Note, γ exists. A choice of γ could be the restriction β|L and for i = 3, . . . , n − 1 we could take
fi = β(ei).)

Let ϕ0 :F → I be given by f1, . . . , fn−1, γ . We claim that ϕ0(F )1+J = I1+J .

Let m be a maximal ideal of R1+J such that ϕ0(F )1+J ⊆ m. Since f1 ∈ m is monic, we have
m ∩ A1+J is maximal and hence J ⊆ m. Therefore, (J, f1, f2) ⊆ m. Therefore, by choice, we
have I1+J ⊆ m. Since I = ϕ0(F ) + I 2, we have I1+J = ϕ0(F )1+J .

So, we can pick an s ∈ J, such that the map ϕ1 :F1+s → I1+s given by f1, . . . , fn−1, γ is
surjective. Since, Q + J = A, we can assume that 1 + s ∈ Q ∩ (1 + J ).

Since Q + J = A, we have L1+J is extended from A1+J and is an invertible (projective)
ideal. Since A1+J is semi-local, L1+J is, in fact, free. Therefore, by modifying s, we can assume
that L1+s is free.

Let ϕ2 :Fs → Is be a surjective map given by (1,0, . . . ,0).

Since Fs(1+s) is free and f1 is monic, by a theorem of Ravi Rao [R2], there is elementary
matrix α ∈ Aut(Fs(1+s)) such that (ϕ2)1+sα = (ϕ1)s .
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Consider the following fiber product diagram:

P
π2

ϕ

π1

Fs

ϕ2

I Is

F1+s

ϕ1

Fs(1+s)
α

ϕ1

Fs(1+s)

ϕ2

I1+s Is(1+s)
Id

Is(1+s),

where P is the R-module obtained by patching F1+s and Fs via α. The map ϕ obtained by the
properties of fiber product diagrams. Note that ϕ is surjective.

We will construct an isomorphism Ψ :F → P such that (ϕΨ )1+s ≡ ϕ1 (modulo s). This will
mean that (ϕΨ )f is a surjective lift of ω.

Since α is elementary, α is isotopic to the identity. Therefore, by 2.2, there are isomorphisms
η1 :F1+s → F1+s and η2 :Fs → Fs such that

• α = (η2)1+s(η1)s,

• η1 ≡ Id (modulo s).

Now let ψ1 = (π1)
−1
1+sη

−1
1 :F1+s → P1+s and ψ2 = (π2)

−1
s η2 :Fs → Ps. Then (ψ1)s =

(ψ2)1+s . So, there is an isomorphism Ψ :F → P such that Ψs = ψ2, and Ψ1+s = ψ1.

Now we claim ϕΨ :F → I is a surjective lift of ω. We will check that ϕ1+sΨ1+s :F1+s →
I1+s is a lift of ω. We have ϕ1+sΨ1+s = ϕ1+sψ1 = ϕ1+s(π1)

−1
1+sη

−1
1 = ϕ1η

−1
1 . Since, η−1

1 ≡
Id (modulo s) and ϕ1 is a lift of ω, the claim is established.

By localizing, we have

φ = (ϕΨ )f :F � I

is a surjective lift of ω. Therefore, we have (I,ω) = 0 in E(B,L) and the proof is complete. �
The following corollary is an immediate consequence of the above Theorem 3.1 and theorem

of Bhatwadekar and Sridharan [BRS1, p. 199].

Corollary 3.2. Let R = A[X] be a polynomial ring over a commutative noetherian ring A and
B = A[X,1/f ], where f ∈ R is a non-zero divisor. Assume dimB = dimA + 1 = n � 3. Let L

be a rank one projective B-module. Suppose I is an ideal in B with height(I ) = n and ω :L ⊕
Bn−1 � I/I 2 is a surjective map. Then ω lifts to a surjection ϕ :L ⊕ Bn−1 � I.

Now assume that 1/(n − 1)! ∈ B. Let P be a projective B-module with rank(P ) = n and
det(P ) = L. Let χ :L

∼−→ ∧n
P be an isomorphism. Let I be an ideal in B with height(I ) = n

and ω :P/IP � I/I 2 be a surjective homomorphism. Then there is a surjective homomorphism
ϕ :P � I such that (I,ω) is obtained from (ϕ,χ) (see [BRS1, Corollary 4.3] for clarification).
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Proof. Since E(B,L) = 0, we have (I,ω) = 0. By [BRS1, Theorem 4.2], ω lifts to a surjection
ϕ :L ⊕ Bn−1 � I. Note that [BRS1, Theorem 4.2] does not require that 1/(n − 1)! ∈ B. This
completes the proof. �

For the later part, since 1/(n − 1)! ∈ B, Euler class e(P,χ) ∈ E(B,L) is defined. As
E(B,L) = 0, we have e(P,χ) = (I,ω) = 0. Therefore the assertion follows from [BRS1, Corol-
lary 4.3].

Remark 3.3. Let R = A[X] be a polynomial ring over a commutative noetherian ring A and
B = A[X,1/f ], where f ∈ R is a non-zero divisor. Assume dimB = dimA + 1 = n � 3. It is a
theorem of Ravi Rao [R1] that any projective B-module P with rank(P ) = n, has a free direct
summand. If 1/(n − 1)! ∈ B, then Euler classes of P are defined and hence the theorem of Rao
[R1] follows from Theorem 3.1.

4. Equivalence theorems

In this section we prove some results regarding vanishing of Euler class groups with respect
to vanishing of certain types of cycles.

Theorem 4.1. Let A be a geometrically reduced affine algebra over an infinite field k with
dimA = n and L be a line bundle over Spec(A). Then the following are equivalent:

(1) E0(A,L) = 0.

(2) The cycle (I ) = 0 in E0(A,L) for all local complete intersection ideals I with height(I ) = n.

(3) The cycle (m) = 0 in E0(A,L), for all smooth maximal ideals m ∈ Spec(A) of height n.

Proof. (1) ⇒ (2) and (2) ⇒ (3) are obvious. So, we prove (3) ⇒ (1). Let I be an ideal of
height n such that I/I 2 is generated by n elements. We will prove that the cycle (I ) = 0
in E0(A,L). Write F = L ⊕ An−1. Take any surjection from ω :F/IF → I/I 2 and lift it to
α :F → I . Notice that α is not necessarily a surjection. However, I is generated by image(α)

and some s ∈ I 2. By Swan’s Bertini Theorem 2.4, there we can find α′ ∈ Hom(F,A) such that,
with β = α + sα′, we have β(F ) = I ∩ J for some reduced ideal J of height n with I + J = A.

Therefore J = m1 ∩· · ·∩mk , where mi are maximal ideals. This results in (I )+∑k
i=1(mi ) =

(I ∩J ) = 0 in E0(A,L). Now by hypothesis, (mi ) = 0 for all i, yielding (I ) = 0. This completes
the proof. �

The following is the Euler class group version of the above theorem.

Theorem 4.2. Let A be a geometrically reduced affine algebra over an infinite field k, with
dimA = n � 2 and L be a rank one projective module. We write F = L ⊕ An−1. Then the
following are equivalent:

(1) E(A,L) = 0.

(2) The cycle (I,ω) = 0 in E(A,L) for all local complete intersection ideals I with
height(I ) = n, and local orientation ω :F/IF → I/I 2.

(3) The cycle (m,ω) = 0 in E(A,L) for all smooth maximal ideal m ∈ Spec(A), of height n,

and local orientation ω :F/mF → m/m2.
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Proof. We will only prove (3) ⇒ (1). Let I be an of height n and ω :F/IF → I/I 2 be a sur-
jective map (local orientation). Now let α :F → I be a lift of ω. Then I = (α(F ), s) for some
s ∈ I 2. By Swan’s Bertini Theorem 2.4 there is α′ ∈ F ∗ such that if β = α + sα′ and J = im(β)

then:

(1) There is a reduced ideal J ′ of height n so that I + J ′ = A and J = I ∩ J ′.
(2) Since J ′ is reduced, J ′ = m1 ∩ · · ·∩mr , where mi are maximal ideals with Ami

regular with
dimension n.

(3) Notice that β is a lift of ω.

(4) We also have (J,ω0) = 0 in E(A,L), where ω0 is induced by β.

Therefore, in E(A,L), we have (I,ω) + ∑k
i=1(mi ,ωmi

) = (J,ω0) = 0 where
ωmi

:F/miF → mi/m
2
i is the local orientation on mi induced by β. By hypothesis, each

(mi ,ωmi
) = 0, leaving us with (I,ω) = 0. This completes the proof. �

The following are versions of the above theorems for rings that are images of regular rings.

Theorem 4.3. Let A be an noetherian ring with dimA = n. Assume that A is image of a regular
ring. Let L be a projective A-module of rank one. Then the following are equivalent:

(1) For all local complete intersection ideals N where N is primary with height(N) = n and
N/N2 is generated by n elements, (N) = 0 in E0(A,L).

(2) For all local complete intersection ideals J with height(J ) = n and J/J 2 is generated by n

elements, (J ) = 0 in E0(A,L).
(3) E0(A,L) = 0.

Proof. (3) ⇒ (2) and (2) ⇒ (1) are obvious.
(1) ⇒ (3) Let CM(A) denote the Cohen–Macaulay locus of Spec(A). By Theorem 2.5,

CM(A) is non-empty and open. So, SpecA \ CM(A) = V (I) for some ideal I . Since rings of
dimension zero are Cohen–Macaulay, height of I is at least one.

Now suppose N is a primary ideal with height(N) = n, and N/N2 is generated by n elements.
We will prove that (N) = 0 in E0(A,L).

Write F = L ⊕ An−1. There is a homomorphism ϕ0 :F → N, such that the induced map
F/NF → N/N2 is surjective. So, N = ϕ0(F ) + N2. Hence, N = (ϕ0(F ), s) for some s ∈ N2.

Write

P = {
℘ ∈ Spec(A): height(℘) < n or (I ⊆ ℘ and N � ℘

}
.

Note that (ϕ0, s) ∈ Hom(F,A) ⊕ A basic on P . Also there is a generalized dimension function
d :P → Z

d(℘) < n = rank(F ) for all ℘ ∈ P .

Therefore, by theorem of Eisenbud and Evans, ϕ = ϕ0 + sβ is basic on P for some β ∈
Hom(F,A).

Write J0 = ϕ(F ). Then height(J0) = n and J0 = N ∩ J for some ideal J with height(J ) = n

and N + J = A.
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Suppose ℘ ∈ Spec(A) and J ⊂ ℘. Then J0 ⊆ ℘ and N � ℘. Therefore I � ℘. Therefore A℘

is Cohen–Macaulay. This also implies that J is locally complete intersection ideal of height n.

Looking at a primary decomposition, J = ⋂k
i=1 Ni with Ni primary local complete intersec-

tion for all i. Now we have N ∩ (
⋂k

i=1 Ni) = J0. Since J0 = ϕ(F ), we have (N) + ∑k
i=1(Ni) =

(J0) = 0 in E0(A,L). By (1), (Ni) = 0 for all i. Thus (N) = 0. Therefore E0(A,L) = 0. So, the
proof of the theorem is complete. �
Theorem 4.4. Let A be an noetherian ring with dimA = n. Assume that A is image of a regular
ring. Let L be a projective A-module of rank one and F = L ⊕ An−1. Then the following are
equivalent:

(1) For all local orientations ω :F/NF → N/N2 where N is primary local complete intersec-
tion ideal with height(N) = n, we have (N,ω) = 0 in E(A,L).

(2) For local orientations ω :F/JF → J/J 2 where J is local complete intersection ideal with
height(J ) = n, we have (J,ω) = 0 in E(A,L).

(3) E(A,L) = 0.

Proof. The proof is similar to the proof of the above Theorem 4.3. The proofs of (3) ⇒ (2) and
(2) ⇒ (1) are obvious.

(1) ⇒ (3) As before, the Cohen–Macaulay locus CM(A) of Spec(A) is open and SpecA \
CM(A) = V (I) for some ideal I with height(I ) � 1.

Now suppose N is a primary ideal with height(N) = n, and ω :F/NF → N/N2 be a local
orientations. We will prove that (N,ω) = 0 in E(A,L).

Let ϕ0 :F → N be a lift of ω (that is not necessarily surjective). As in the proof of Theo-
rem 4.3, we can find s ∈ N2, and ϕ = ϕ0 + sβ for some β ∈ Hom(F,A) such that if J0 = ϕ(F )

then J0 = N ∩ J where J is local complete intersection ideal of height n and J + N = A.

Looking at the primary decomposition

J =
k⋂

i=1

Ni

of J, where Ni is primary local complete intersection for all i = 1, . . . , k. For i = 1, . . . , k let
ωi = ϕ ⊗ A/Ni and let ω0 = ϕ ⊗ A/J0.

Note (J0,ω0) = 0 in E(A,L) and ϕ ⊗ A/N = ω. Now we have

N ∩
(

k⋂
i=1

Ni

)
= J0.

Therefore

(N,ω) +
k∑

i=1

(Ni,ωi) = (J0,ω0) = 0.

By (1), (Ni,ωi) = 0 for all i = 1, . . . , k. Thus (N,ω) = 0. Therefore E(A,L) = 0. This
completes the proof of the theorem. �
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