Chapter 5 System of 1^{st} -Order Linear ODE §5.7 Repeated Eigenvalues

Satya Mandal

U. Kansas

Arrowtic K-Theory
Fall 2025

Repeated Eigenvalues

► We continue to consider homogeneous linear systems with constant coefficients:

$$y' = Ay$$
 A is an $n \times n$ matrix with constant entries (1)

- Now, we consider the case, when some of the eigenvalues (real or complex) are repeated.
- For an eigen value r of A, let

$$E(r) = NullSpace(A - rI)$$
 denote the eigen space of r

Two Cases of higher multiplicity

Consider the system (1). Let r be an eigenvalue of A with multiplicity $m \ge 2$. (Here r is real or complex.) Two cases.

► Case $m = \dim E(r)$: there is a basis of m linearly independent eigenvectors:

$$\xi^{(1)}, \dots, \xi^{(m)}$$
 of A. i.e. $(A - rI)\xi^{(i)} = 0$.

► Case $k = \dim E(r) \le m - 1$: There is a basis of n linearly independent eigenvectors (fewer than m)

$$\xi^{(1)}, \dots, \xi^{(k)}$$
 of A $k \le m - 1$

If r is real, then the eigenvectors $\xi^{(i)}$ are assumed to be real, else they are complex.

If there are m independent eigenvector

Suppose $m = \dim E(r)$. So, there are m independent eigenvector $\xi^{(1)}, \ldots, \xi^{(m)}$, corresponding to the eigenvalue r.

▶ Then there are m solutions of (1):

$$y^{(1)} = \xi^{(1)}e^{rt}, \dots, y^{(m)} = \xi^{(m)}e^{rt}$$
 (2)

- ► They are linearly independent for all t.
- They extend to a fundamental set of solutions, with other n-m solutions corresponding to other eigenvalues of A.

If $k = \dim E(r) \le m - 1$

Suppose $k = \dim E(r) \le m-1$. The there are m_1 linearly independent eigenvector $\xi^{(1)}, \ldots, \xi^{(k)}$, with $k \le m-1$ corresponding to the eigenvalue r.

▶ Then, there are n solutions of (1):

$$y^{(1)} = \xi^{(1)}e^{rt}, \dots, y^{(k)} = \xi^{(k)}e^{rt}$$
 (3)

► They are linearly independent for all t.

Extending to *m* solutions

▶ There are algorithms that extends (3) to *m* solutions:

$$\begin{cases} y^{(1)} = \xi^{(1)}e^{rt}, \dots, y^{(k)} = \xi^{(k)}e^{rt}, \\ y^{(n+1)}, \dots, y^{(m)} \end{cases}$$
(4)

which are linearly independent.

- We can say that, these m solutions described in (4) are the contributions from the eigenvalue r.
- ▶ They (4) extend to a fundamental set of solutions, with other n-m solutions corresponding to other eigenvalues of A.

Complex Eigen values

If r is a complex eigenvalue of A, then so is its conjugate \overline{r} . Splitting the m complex solutions (4), in to real and imaginary parts, lead to 2m real solutions of (1), which correspond to the pair of eigenvalues r and \overline{r} .

In other words, the pair of conjugate complex eigenvalues r and \overline{r} , contribute these 2m solutions.

Algorithms to achieve extension (4)

To keep things simple, we would only consider the case m = 2. So, be r be a "double" eigenvalue of A.

▶ If there are two linearly independent eigen vectors $\xi^{(1)}$, $\xi^{(2)}$ corresponding to r, then by (2),

$$y^{(1)} = \xi^{(1)}e^{rt}, y^{(2)} = \xi^{(2)}e^{rt}$$

are two solutions of (1), linearly independent, for all t.

Continued

Now suppose r is a "double" eigenvalue of A, and there is only one linearly independent eigenvector ξ for r (i. .e. $(A - r)\xi = 0$).

- ► Then $y^{(1)} = \xi e^{rt}$ is a solution of (1).
- ► Further, the linear algebraic system

$$(A - rI)\eta = \xi$$
 has a solution (5)

and
$$y^{(2)} = \xi t e^{rt} + \eta e^{rt}$$
 is a solution of (1). (6)

▶ (It needs a proof that (5) has a solution, which we skip.)

- ▶ $y^{(1)}$, $y^{(2)}$ extend to a fundamental set of solutions, with other n m = n 2 solutions corresponding to other eigenvalues of A.
- lt is interesting to note, by multiplying (5) by (A rI), we have $(A rI)^2 \eta = 0$.
- Subsequently, we ONLY consider problems with eigenvalues with multiplicity two, with only one linearly independent eigenvector.

Example 1
Example 2
Example 3: With Enough Eigenvectors

Example 4: IVP

Example 1

Find the general solution of the following system of equations:

$$y' = \begin{pmatrix} 1 & -1 \\ 4 & -3 \end{pmatrix} y \tag{7}$$

Computing Eigenvalues

► Eigenvalues of the coef. matrix A, are: given by

$$\begin{vmatrix} 1-r & -1 \\ 4 & -3-r \end{vmatrix} = 0 \implies (r+1)^2 = 0 \implies r = -1$$

Example 1
Example 2
Example 3: With Example 4: IVP

Example 3: With Enough Eigenvectors

Eigenvectors

► Eigenvectors for r = -1 is given by $(A - rI)\xi = 0$, which is

$$\begin{pmatrix} 1+1 & -1 \\ 4 & -3+1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longrightarrow \begin{cases} 2\xi_1 - \xi_2 = 0 \\ 0 = 0 \end{cases}$$

▶ Taking $\xi_1 = 1$, an eigenvector of r = -1 is

$$\xi = \left(\begin{array}{c} 1\\2 \end{array}\right)$$

► Correspondingly, a solution of (7) is:

$$y^{(1)} = \xi e^{rt} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} e^{-t}$$

- ▶ There is no second linearly independent eigenvector.
- So, use (6) to compute $y^{(2)}$. We proceed to solve the equation $(A rI)\eta = \xi$

Compute η

▶ Write down the equation $(A - rI)\eta = \xi$ as follows:

$$\begin{pmatrix} 1+1 & -1 \\ 4 & -3+1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$-1 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$\left(\begin{array}{cc} 2 & -1 \\ 4 & -2 \end{array}\right) \left(\begin{array}{c} \eta_1 \\ \eta_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 2 \end{array}\right) \Longrightarrow \left\{\begin{array}{c} 2\eta_1 - \eta_2 = 1 \\ 0 = 0 \end{array}\right.$$

▶ Taking $\eta_1 = 1$ a choice of η is

$$\eta = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Answer

▶ By (6) another solution of (7) is

$$\mathsf{y}^{(2)} = \xi t \mathsf{e}^{\mathsf{rt}} + \eta \mathsf{e}^{\mathsf{rt}} = \left(\begin{array}{c} 1 \\ 2 \end{array} \right) t \mathsf{e}^{-t} + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) \mathsf{e}^{-t}$$

▶ So, the general solution is $y = c_1 y^{(1)} + c_2 y^{(2)}$, or

$$\mathsf{x} = c_1 \left(\begin{array}{c} 1 \\ 2 \end{array} \right) e^{-t} + c_2 \left[\left(\begin{array}{c} 1 \\ 2 \end{array} \right) t e^{-t} + \left(\begin{array}{c} 1 \\ 1 \end{array} \right) e^{-t} \right] \quad (8)$$

Remark. While solving for η we could have taken $\eta_1 = \frac{1}{2}$ (or something else). In that case we would have

$$\eta = \left(\begin{array}{c} \frac{1}{2} \\ 0 \end{array}\right)$$

In that case,

- ightharpoonup y⁽²⁾ would be different.
- The general solution (8), may look different. But it would be the same, by changing the constants c_1 , c_2 .

Example 1
Example 2

Example 3: With Enough Eigenvectors

Example 4: IVP

Example 2

Find the general solution of the following system of equations:

$$y' = \begin{pmatrix} 2 & 2 & 2 \\ 3 & 3 & -1 \\ 1 & -3 & 1 \end{pmatrix} y \tag{9}$$

Computing Eigenvalues

Eigenvalues of the coef. matrix A, are: given by

$$\begin{vmatrix} 2-r & 2 & 2 \\ 3 & 3-r & -1 \\ 1 & -3 & 1-r \end{vmatrix} = 0$$

$$(2-r) \begin{vmatrix} 3-r & -1 \\ -3 & 1-r \end{vmatrix} - 2 \begin{vmatrix} 3 & -1 \\ 1 & 1-r \end{vmatrix} + 2 \begin{vmatrix} 3 & 3-r \\ 1 & -3 \end{vmatrix} = 0 \Longrightarrow$$

$$-r^3 + 6r^2 - 32 = 0 \Longrightarrow -(r+2)(r-4)^2 = 0$$

So, eigenvalues are: r = 4 with multiplicity 2. r = -2

Eigenvectors

Eigenvectors for r = -2 is given by $(A - rI)\xi = 0$:

$$\begin{pmatrix} 2+2 & 2 & 2 \\ 3 & 3+2 & -1 \\ 1 & -3 & 1+2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$
$$\begin{pmatrix} 4 & 2 & 2 \\ 3 & 5 & -1 \\ 1 & -3 & 3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

TI-84 is giving clumsy output. So, I will solve it manually. Note first row is sum second and third rows. So, above system reduces to

$$\begin{pmatrix} 0 & 0 & 0 \\ 3 & 5 & -1 \\ 1 & -3 & 3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 14 & -10 \\ 1 & -3 & 3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{cases} 14\xi_2 - 10\xi_3 = 0 \\ \xi_1 - 3\xi_2 + 3\xi_3 = 0 \end{cases} \Longrightarrow \begin{cases} \xi_3 = 1.4\xi_2 \\ \xi_1 = 3\xi_2 - 3\xi_3 \end{cases}$$
With $\xi_2 = 10$, $\xi_3 = 14$, $\xi_1 = -12$

▶ So, an eigenvector of r = -2 is:

$$\xi = \left(\begin{array}{c} -12\\10\\14 \end{array}\right)$$

So, a solution to (9), corresponding to r = -2 is $x^{(1)} = \xi e^{rt}$:

$$y^{(1)} = \begin{pmatrix} -12 \\ 10 \\ 14 \end{pmatrix} e^{-2t}$$

Example 1
Example 2

Example 3: With Enough Eigenvectors
Example 4: IVP

Eigenvectors for r = 4

▶ Eigenvectors for r = 4 is given by $(A - rI)\xi = 0$:

$$\begin{pmatrix} 2-4 & 2 & 2 \\ 3 & 3-4 & -1 \\ 1 & -3 & 1-4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} -2 & 2 & 2 \\ 3 & -1 & -1 \\ 1 & -3 & -3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

Use TI84 (rref)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

▶ Taking $\xi_2 = 1$ and eigenvector of r = 4 is:

$$\xi = \left(\begin{array}{c} 0\\1\\-1\end{array}\right)$$

► Correspondingly, a solution to (9), corresponding to r = 2 is $y^{(2)} = \xi e^{rt}$:

$$\mathsf{y}^{(2)} = \left(\begin{array}{c} \mathsf{0} \\ \mathsf{1} \\ -\mathsf{1} \end{array}\right) e^{4t}$$

- ▶ There is no second linearly independent eigenvector.
- So, use (6) to compute another solution $y^{(3)}$. We proceed to solve the equation $(A rI)\eta = \xi$

Compute η

▶ Write down the equation $(A - rI)\eta = \xi$ as follows:

$$\begin{pmatrix} -2 & 2 & 2 \\ 3 & -1 & -1 \\ 1 & -3 & -3 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$
Use TI84 (rref)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \\ \eta_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}$$

▶ Taking $\eta_2 = \frac{1}{2}$ a choice of η is

$$\eta = \left(\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{array}\right)$$

Answer

▶ By (6) another solution of (9) is

$$\mathsf{y}^{(3)} = \xi t \mathsf{e}^{rt} + \eta \mathsf{e}^{rt} = \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) t \mathsf{e}^{4t} + \left(egin{array}{c} rac{1}{2} \ rac{1}{2} \ 0 \end{array}
ight) \mathsf{e}^{4t}$$

▶ So, the general solution is $y = c_1y^{(1)} + c_2y^{(2)} + c_3y^{(2)}$, or

$$egin{aligned} \mathsf{x} &= c_1 \left(egin{array}{c} -12 \ 10 \ 14 \end{array}
ight) e^{-2t} + c_2 \left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) e^{4t} \ + c_3 \left[\left(egin{array}{c} 0 \ 1 \ -1 \end{array}
ight) t e^{4t} + \left(egin{array}{c} rac{1}{2} \ rac{1}{2} \ 0 \end{array}
ight) e^{4t} \end{array}
ight] \end{aligned}$$

Example 3

Find a general solution of

$$y' = \left(\begin{array}{rrr} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{array}\right) y$$

First, find the eigenvalues:

$$\begin{vmatrix} 3-r & 0 & -1 \\ 0 & 2-r & 0 \\ -1 & 0 & 3-r \end{vmatrix} = 0$$

Continued

$$(r-2)(r^2-6r+8) = 0$$

 $(r-2)^2(r-4) = 0$
 $r = 2, 2, 4$

An eigenvector and solution for r = 2

The eigen value r = 2 has multiplicity two. So, we expect two linearly independent eigen vectors.

▶ Eigenvetors for r = 2 is given by (use TI-84 "rref"):

$$\begin{pmatrix} 3-r & 0 & -1 \\ 0 & 2-r & 0 \\ -1 & 0 & 3-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \text{(use rref)}$$

$$\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} \xi_1 - \xi_3 = 0 = 0 \\ 0 = 0 \\ 0 = 0 \end{cases}$$

Expect two linearly independent eigen vectors for r = 2. They are:

1. Taking
$$\xi_2 = 1, \xi_3 = 0, \ \xi^{(1)} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$

2. Likewise, taking
$$\xi_2 = 0, \xi_3 = 1, \ \xi^{(2)} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Continued: r = 2

▶ This gives two solutions, corresponding to r = 2 is:

$$\begin{cases} y^{(1)} = \xi^{(1)}e^{rt} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{2t}, \\ y^{(2)} = \xi^{(2)}e^{rt} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} \end{cases}$$

An eigenvector and solution for r = 4

▶ Eigenvetors for r = 4 is given by (use TI-84 "rref"):

$$\begin{pmatrix} 3-r & 0 & -1 \\ 0 & 2-r & 0 \\ -1 & 0 & 3-r \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow$$

$$\begin{pmatrix} -1 & 0 & -1 \\ 0 & -2 & 0 \\ -1 & 0 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Longrightarrow \text{(use rref)}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$\begin{cases} \xi_1 = 0 \\ \xi_2 = 0 \\ 0 = 0 \end{cases}$$

ightharpoonup Expect two linearly independent eigen vectors for r=2.

They are: Taking
$$\xi_3 = 1$$
, $\xi^{(3)} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

▶ This gives a solution, corresponding to r = 4:

$$y^{(3)} = \xi^{(3)}e^{rt} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{4t}$$

General Solution

► So, the general solution is:

$$y = c_1 y^{(1)} + c_2 y^{(2)} + c_3 y^{(3)}$$

$$= c_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{4t} \quad (10)$$

Example 1

Example 2

Example 3: With Enough Eigenvectors

Example 4: IVP

Example 4

Solve the initial value problems

$$y' = \left(\begin{array}{ccc} 3 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 3 \end{array}\right) y,$$

$$y = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$$

Example 1
Example 2
Example 3: With Ex

Example 3: With Enough Eigenvectors
Example 4: IVP

Solution

This is an extension of an example above, and the general solutions was (34):

$$\mathbf{y} = c_1 \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} e^{2t} + c_2 \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} e^{2t} + c_3 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} e^{4t}$$

$$= \begin{pmatrix} 0 & e^{2t} & 0 \\ e^{2t} & 0 & 0 \\ 0 & 0 & e^{4t} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

Example 1
Example 2

Example 3: With Enough Eigenvectors

Example 4: IVP

Continued

Using the initial condition:

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \Longrightarrow$$

$$c_1 = -1, \quad c_2 = 1, \quad c_3 = 1$$

The Answer

$$y = \left(\begin{array}{ccc} 0 & e^{2t} & 0 \\ e^{2t} & 0 & 0 \\ 0 & 0 & e^{4t} \end{array} \right) \left(\begin{array}{c} -1 \\ 1 \\ 1 \end{array} \right) = \left(\begin{array}{c} e^{2t} \\ -e^{2t} \\ e^{4t} \end{array} \right)$$