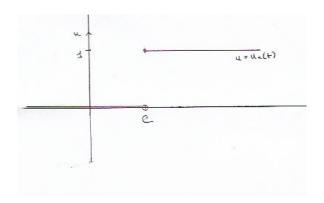
Chapter 6 The Laplace Transform §6.3 Step Functions and Dirac δ

Satya Mandal

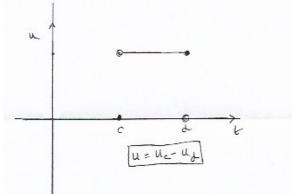
U. Kansas

Arrowtic K-Theory
Fall 2025

Step Function


Definition: Suppose c is a fixed real number. The unit step function u_c is defined as follows:

$$u_c(t) = \begin{cases} 0 & \text{if } t < c \\ 1 & \text{if } c \le t \end{cases} \tag{1}$$


If follows immediately,

$$1 - u_c(t) = \begin{cases} 1 & \text{if } t < c \\ 0 & \text{if } c \le t \end{cases}$$

The Graph of $u = u_c(t)$

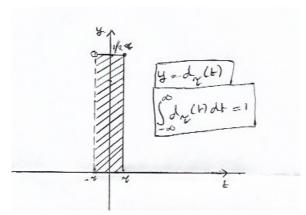
▶ It also follows: For two real numbers c < d, we have

Impulse Function Dirac $\delta(t)$

In physics, to represent a unit impulse, the Dirac Delta Function is defined, by the following two conditions:

$$\begin{cases} \delta(t) = 0 & \text{if } t \neq 0 \\ \int_{-\infty}^{\infty} \delta(t) dt = 1 \end{cases}$$
 (3)

This may appear to be an unusual way to define a function, because $\delta(0)$ is not given in any form. For of this reason, in Algebra, this will not qualify as a function, .


Approximation to Dirac $\delta(t)$

For $\tau > 0$, define a function d_{τ} , as follows:

$$d_{ au}(t)=rac{1}{2 au}(u_{- au}-u_{ au})(t)=\left\{egin{array}{ll} 0 & ext{if} \ t<- au \ rac{1}{2 au} & ext{if} \ - au\leq t< au \ 0 & ext{if} \ au\leq t \end{array}
ight.$$

Refer to the graph in the next frame.

Continued

Graph of $y = d_{\tau}(t)$:

Continued

We have the following:

$$ightharpoonup \int_{-\infty}^{\infty} d_{ au}(t)dt = 1 ext{ for all } au
eq 0.$$

$$ext{And}, \quad \lim_{ au o 0} \int_{-\infty}^{\infty} d_{ au}(t) dt = 1$$

So, one can view

$$\delta = \lim_{\tau \to 0} d_{\tau}$$

Laplace Transform of u_c

▶ For $c \ge 0$, the Laplace Transform

$$\mathcal{L}\{u_c(t)\} = \frac{e^{-cs}}{s} \qquad s > 0.$$

▶ Proof. By definition $\mathcal{L}\{u_c(t)\}=$

$$\int_0^\infty e^{-st} u_c(t) dt = \int_0^c e^{-st} u_c(t) dt + \int_c^\infty e^{-st} u_c(t) dt$$
$$= \int_0^c 0 dt + \int_c^\infty e^{-st} dt = \frac{e^{-cs}}{s}$$

Translation of a Function

▶ Given a function f(t) on the domain $t \ge 0$, define

$$g(t) = \left\{ egin{array}{ll} 0 & \mbox{if } t < c \\ f(t-c) & \mbox{if } t \geq c \end{array}
ight.$$

- $\text{Write } g(t) = u_c(t)f(t-c).$
- ightharpoonup g(t) is translation of f to the right by c.

Laplace Transform and Translation

Theorem 6.3.1 Suppose
$$c > 0$$
 and $F(s) = \mathcal{L}\{f(t)\}.$

Then,
$$\mathcal{L}\{u_c(t)f(t-c)\}=e^{-cs}F(s)$$

Therefore,
$$\mathcal{L}^{-1}\left\{e^{-cs}\mathcal{L}\left\{f(t)\right\}\right\} = u_c(t)f(t-c).$$

Proof.
$$\mathcal{L}\{u_c(t)f(t-c)\}=\int_0^\infty u_c(t)f(t-c)e^{-st}dt$$

$$=\int_{c}^{\infty}f(t-c)e^{-st}dt=\int_{c}^{\infty}f(x)e^{-s(x+c)}dx=e^{-cs}F(s)$$

Laplace Transform and Translation

Theorem 6.3.2 Suppose c > 0 and $F(s) = \mathcal{L}\{f(t)\}$. Then,

$$\mathcal{L}\{e^{ct}f(t-c)\}=F(s-c)$$

Therefore,

$$\mathcal{L}^{-1}\{F(s-c)\}=e^{ct}f(t-c).$$

Proof. Similar to the above.

Remark. The formulas in these two theorems are in the charts.

Example 1

Express the following function in terms of step functions:

$$f(t) = \begin{cases} 2 & \text{if } 0 \le t < 1 \\ -2 & \text{if } 1 \le t < 2 \\ 2 & \text{if } 2 \le t < 3 \\ -2 & \text{if } 3 \le t < 4 \\ 0 & \text{if } t \ge 4 \end{cases}$$

- ▶ Use the (2) for $u_c u_d$.
- ▶ The first line is given by $(u_0 u_1)$, the second line is given by $-(u_1 u_2)$, the third line is given by $(u_2 u_3)$, the fourth line is given by $-(u_3 u_4)$.

► So,

$$f(t) = 2(u_0 - u_1) - 2(u_1 - u_2) + 2(u_2 - u_3) - 2(u_3 - u_4)$$
$$= 2u_0 - 4u_1 + 4u_2 - 4u_3 + 2u_4$$

Example 2

Compute the Laplace transform of the function:

$$f(t) = \begin{cases} 0 & \text{if } t < 2 \\ t^2 - 4t + 5 & \text{if } t \ge 2 \end{cases}$$

To use theorem 6.3.1 (or the Charts), rewrite f(t):

$$f(t) = \begin{cases} 0 & \text{if } t < 2\\ (t-2)^2 + 1 & \text{if } t \ge 2 \end{cases}$$

ightharpoonup With $g(t) = t^2 + 1$, we have

$$f(t) = u_2(t)g(t-2)$$

▶ By Theorem 6.3.1 (Use Charts),

$$\mathcal{L}\{u_2(t)g(t-2)\} = e^{-2s}\mathcal{L}\{t^2+1\}$$

= $e^{-2s}\left(\frac{2}{s^3} + \frac{1}{s}\right)$

Example 3

Compute the inverse Laplace transform of the function:

$$F(s) = \frac{(s-2)e^{-2s}}{s^2 - 4s + 5}$$

- ► Write $F(s) = e^{-2s}H(s)$ where $H(s) = \frac{(s-2)}{s^2-4s+5}$.
- ▶ Also write $\mathcal{L}^{-1}{H(s)} = h(t)$
- ▶ By Theorem 6.3.1 (Use Charts)

$$\mathcal{L}^{-1}\{F(s)\} = u_2(t)h(t-2) \tag{4}$$

$$h(t) = \mathcal{L}^{-1} \{ H(s) \} = \mathcal{L}^{-1} \left\{ \frac{(s-2)}{s^2 - 4s + 5} \right\}$$
$$= \mathcal{L}^{-1} \left\{ \frac{(s-2)}{(s-2)^2 + 1} \right\} = e^{2t} \mathcal{L}^{-1} \left\{ \frac{s}{s^2 + 1} \right\} \qquad \text{(Use Chart)}$$
$$= e^{2t} \cos t$$

▶ By (4)

$$\mathcal{L}^{-1}\left\{F(s)\right\} = u_2(t)h(t-2) = u_2(t)e^{2(t-2)}\cos(t-2)$$

The Dirac Delta $\delta(t)$, represents Unit Impulse, at time t=0. So, the Unit Impulse at time $t=t_0$, is represented, by the translation $\delta(t-t_0)$, which we denote by $\delta^{t_0}(t):=\delta(t-t_0)$. More directly, define

$$\left\{ egin{array}{ll} \delta^{t_0}(t) = 0 & ext{if } t
eq t_0 \ \int_{-\infty}^{\infty} \delta^{t_0}(t) dt = 1 \end{array}
ight.$$

Laplace Transform of $d_{ au}(t-t_0)$

Fix, $t_0 > 0$ and $\tau > 0$ such that $t_0 > \tau$. Define,

$$d_{ au}^{t_0}(t) := d_{ au}(t-t_0) = \left\{ egin{array}{ll} 0 & ext{if} \ t < t_0 - au \ rac{1}{2 au} & ext{if} \ t_0 - au \leq t < t_0 + au \ 0 & ext{if} \ t_0 + au \leq t \end{array}
ight.$$

So, $d_{ au}^{t_0}=\frac{1}{2 au}\left(u_{t_0- au}-u_{t_0+ au}\right)$. So, the Laplace Transform

$$\mathcal{L}\lbrace d_{ au}^{t_0}
brace(s) = rac{1}{2 au}\left(\mathcal{L}\lbrace u_{t_0- au}
brace(s) - \mathcal{L}\lbrace u_{t_0+ au}(s)
brace
ight)$$

$$=\frac{1}{2\tau}\left(\frac{e^{-(t_0-\tau)s}}{s}-\frac{e^{-(t_0+\tau)s}}{s}\right)=\frac{e^{-t_0s}}{2s}\left(\frac{e^{s\tau}-e^{-s\tau}}{\tau}\right)$$

Laplace Transform of Dirac $\delta^{t_0}(t)$

Theorem For time $t_0 > 0$, the Laplace Transform of Dirac $\delta^{t_0}(t)$ is:

$$\mathcal{L}\{\delta^{t_0}(t)\}=e^{-t_0s}$$

Outline of the Proof. We can view

$$\lim_{\tau \to 0} d_{\tau}^{t_0} = \delta^{t_0}.$$
 So,

$$\mathcal{L}\{\delta^{t_0}\} = \lim_{\tau \to 0} \mathcal{L}\{d_\tau^{t_0}\} = \lim_{\tau \to 0} \left(\frac{e^{-t_0 s}}{2s} \left(\frac{e^{s\tau} - e^{-s\tau}}{\tau}\right)\right) = e^{-t_0 s}$$

To compute this limit, one can use L'Hospital's Rule.

