Chapter 5: System of 1^{st} -Order Linear ODE §5.6 Complex Eigenvalues

Satya Mandal

U. Kansas

Arrowtic K-Theory
Fall 2025

Complex Eigenvalues

We continue to consider homogeneous linear systems with constant coefficients:

$$y' = Ay$$
 A is an $n \times n$ matrix with real entries (1)

- In §5.5, we considered the situation when all the eigenvalues of A, were real and distinct. In this section, we consider when some of the eigen values are complex.
- ▶ As in §5.4, solutions of (1) will be denoted by

$$y^{(1)}(t), \cdots, y^{(n)}(t).$$

Principle of superposition

Recall the Principle of superposition and the converse (§5.4):
 If y⁽¹⁾,..., y⁽ⁿ⁾ are solution of (1), then, any constant

linear combination
$$y = c_1 y^{(1)} + \cdots + c_n y^{(n)}$$
 (2)

is also a solution of the same system (1).

- ▶ The converse is also true, if Wronskian $W \neq 0$.
- Further, if r is an eigenvalue of A and ξ is an eigenvector of A, corresponding to r, then

$$y = \xi e^{rt}$$
 is a solution of (1) (3)

Complex eigenvalues and vectors

Now, suppose A has a complex eigenvalue $r_1 = \lambda + i\mu$ and $\xi^{(1)}$ is an eigenvector, for r_1 . That means

$$(A - (\lambda + i\mu)I)\xi^{(1)} = 0.$$
 (4)

Apply conjugation to (4):

$$(A - (\lambda - i\mu)I)\overline{\xi^{(1)}} = 0$$
 This means:

- $r_2 = \overline{r_1} = \lambda i\mu$ an eigenvalue of A. And,
- $\xi^{(2)} = \overline{\xi^{(1)}}$ is an eigenvector of A, corresponding to r_2 .

Continued: Two conjugate complex Solutions

▶ Two eigen values $r_1, r_2 = \overline{r_1}$ and the corresponding eigenvalues give two solutions of (1):

$$y^{(1)} = \xi^{(1)} e^{r_1 t}, \quad y^{(2)} = \xi^{(2)} e^{r_2 t}$$
 (5)

• Write $\xi^{(1)} = a + ib$, where a, b real real vectors. Then

$$y^{(1)} = (a + ib)e^{(\lambda + i\mu)t} = (a + ib)[e^{\lambda t}(\cos \mu t + i\sin \mu t)]$$
$$= e^{\lambda t}(a\cos \mu t - b\sin \mu t) + ie^{\lambda t}(a\sin \mu t + b\cos \mu t)$$

Continued: Two Real Solutions

▶ Both real and imaginary part of $y^{(1)}$ are solutions of (1), as follows:

$$\begin{cases} u = e^{\lambda t} (a \cos \mu t - b \sin \mu t) \\ v = e^{\lambda t} (a \sin \mu t + b \cos \mu t) \end{cases}$$
 (6)

- ► These real solutions u, v fit in very well as a part of a fundamental set of n solutions. There will be too many cases to make this statement precise, in complete details. However, we make a statement in the following frame.
- ▶ We will, usually, consider systems of 2 or 3 equations. So, following statement will suffice.

As part of Fundamental set

Theorem 5.6.1 Consider the homogenous linear system (1): y' = Ay, where A is an $n \times n$ matrix, with real entries.

- Suppose $r_1 = \lambda + i\mu$, $r_1 = \lambda i\mu$ are two conjugate eigenvalues of A. As above, let $\xi^{(1)} = a + ib$ is an eigenvector of r_1 . Accordingly, the conjugate $\xi^{(2)} = a ib$ is an eigenvector of r_2 .
- ► Let u, v be as in (6).

Then there are (real) solutions $y^{(3)}, \ldots, y^{(n)}$ of (1), such that $u, v, y^{(3)}, \ldots, y^{(n)}$ forms a fundamental set of solutions of (1).

Continued

Further, the solutions $y^{(3)}, \ldots, y^{(n)}$ are determined by the eigenvalues $r_1, r_2, r_3, \ldots, r_n$, (real or complex) and their multiplicities.

Hence, any solution x has the form (2):

$$x = c_1 u + c_2 v + c_3 y^{(3)} + \dots + c_n y^{(n)}$$
 (7)

Example 1

Find the general solution (real valued) of the equation:

$$y' = \begin{pmatrix} -3 & 5 \\ -1 & 1 \end{pmatrix} y \tag{8}$$

Eigenvalues of the coef. matrix A, are: given by

$$\begin{vmatrix} -3-r & 5 \\ -1 & 1-r \end{vmatrix} = 0 \quad r = -1+i, -1-i$$

Eigenvectors

Analytically, eigenvectors for r = -1 + i is given by $(A - rI)\xi = 0$, which is

$$\begin{pmatrix} -3 - (-1+i) & 5 \\ -1 & 1 - (-1+i) \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The second row is 2 + i-times the first row. It follows:

$$\left(\begin{array}{cc} -2-i & 5 \\ -1 & 2-i \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \Longrightarrow$$

Continued

$$\left(\begin{array}{cc} 0 & 0 \\ -1 & 2-i \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \Longrightarrow$$

With $\xi_2 = 1$, an eigenvector of r = -1 + i is

$$\xi^{(1)} = \begin{pmatrix} 2-i \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} + i \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

The solution

▶ So, the real and the imaginary part of $\xi^{(1)}$ are:

$$\mathsf{a} = \left(\begin{array}{c} 2 \\ 1 \end{array} \right), \quad \mathsf{b} = \left(\begin{array}{c} -1 \\ 0 \end{array} \right)$$

▶ With r = -1 + i, we have $\lambda = -1, \mu = 1$. By (6),

$$\left\{ \begin{array}{l} \mathsf{u} = e^{-t} \left(\left(\begin{array}{c} 2 \\ 1 \end{array} \right) \cos t - \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \sin t \right) \\ \mathsf{v} = e^{-t} \left(\left(\begin{array}{c} 2 \\ 1 \end{array} \right) \sin t + \left(\begin{array}{c} -1 \\ 0 \end{array} \right) \cos t \right) \end{array} \right.$$

Continued

So, the general solution of (8)

$$\mathbf{y} = c_1 \mathbf{u} + c_2 \mathbf{v}$$
 $= c_1 e^{-t} \left(\left(egin{array}{c} 2 \ 1 \end{array}
ight) \cos t - \left(egin{array}{c} -1 \ 0 \end{array}
ight) \sin t
ight) + \ c_2 e^{-t} \left(\left(egin{array}{c} 2 \ 1 \end{array}
ight) \sin t + \left(egin{array}{c} -1 \ 0 \end{array}
ight) \cos t
ight)$

Continued

$$c_1 e^{-t} \left(\begin{array}{c} 2\cos t + \sin t \\ \cos t \end{array} \right) + c_2 e^{-t} \left(\begin{array}{c} 2\sin t - \cos t \\ \sin t \end{array} \right)$$

Example 2

Find the general solution (real valued) of the equation:

$$y' = \begin{pmatrix} 1 & 2 & 3 \\ -2 & 1 & 2 \\ 0 & 0 & 1 \end{pmatrix} y \tag{9}$$

► Eigenvalues of the coef. matrix A, are:

$$\begin{vmatrix} 1-r & 2 & 3 \\ -2 & 1-r & 2 \\ 0 & 0 & 1-r \end{vmatrix} = 0$$

$$(1-r)\left|\begin{array}{cc} 1-r & 2 \\ -2 & 1-r \end{array}\right| = 0$$

So, $r = 1, 1 \pm 2i$

Eigenvectors

▶ Eigenvectors for r = 1 is given by (A - rI)x = 0, which is

$$\begin{pmatrix} 1-1 & 2 & 3 \\ -2 & 1-1 & 2 \\ 0 & 0 & 1-1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 & 3 \\ -2 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

Use TI-84 (rref):

$$\left(\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 1 & 1.5 \\ 0 & 0 & 0 \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \\ \xi_3 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

With
$$\xi_3=2$$
, an eigenvector of $r=1$ is: $\xi^{(1)}=\begin{pmatrix}2\\-3\\2\end{pmatrix}$.

The corresponding solution
$$y^{(1)} = \xi^{(1)}e^{rt} = \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix}e^t$$

Eigenvectors

► Eigenvectors for r = 1 + 2i is given by $(A - rI)\xi = 0$, which is

$$\begin{pmatrix} 1 - (1+2i) & 2 & 3 \\ -2 & 1 - (1+2i) & 2 \\ 0 & 0 & 1 - (1+2i) \end{pmatrix} \xi = 0$$

$$\begin{pmatrix} -2i & 2 & 3 \\ -2 & -2i & 2 \\ 0 & 0 & -2i \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

So,

$$\begin{cases} -2i\xi_1 + 2\xi_2 + 3\xi_3 = 0 \\ -2\xi_1 - 2i\xi_2 + 2\xi_3 = 0 \\ -2i\xi_3 = 0 \end{cases} \begin{cases} -2i\xi_1 + 2\xi_2 = 0 \\ -2\xi_1 - 2i\xi_2 = 0 \\ \xi_3 = 0 \end{cases} \begin{cases} -i\xi_1 + \xi_2 = 0 \\ 0 = 0 \\ \xi_3 = 0 \end{cases}$$

With $\xi_1 = 1$, an eigenvector of r = 1 + 2i is:

$$\xi^{(2)} = \begin{pmatrix} 1 \\ i \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} i$$

Solutions corresponding to $r = 1 \pm 2i$

By (6) two real solutions, corresponding to $r = 1 \pm 2i$ are:

$$\begin{cases} u = e^{\lambda t} (a \cos \mu t - b \sin \mu t) \\ v = e^{\lambda t} (a \sin \mu t + b \cos \mu t) \end{cases}$$

$$\begin{cases} u = e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \cos 2t - \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \sin 2t \end{pmatrix} = e^{t} \begin{pmatrix} \cos 2t \\ -\sin 2t \\ 0 \end{pmatrix} \\ v = e^{t} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \sin 2t + \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \cos 2t \end{pmatrix} = e^{t} \begin{pmatrix} \cos 2t \\ -\sin 2t \\ 0 \end{pmatrix}$$

The general solution

Combining $y^{(1)}$, u, v, by (7), the general solution of (9) is

$$x = c_1 x^{(1)} + c_2 u + c_3 v$$

$$= c_1 \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} e^t + c_2 e^t \begin{pmatrix} \cos 2t \\ -\sin 2t \\ 0 \end{pmatrix} + c_3 e^t \begin{pmatrix} \sin 2t \\ \cos 2t \\ 0 \end{pmatrix}$$

Example 1 Example 2 Example 3: IVP

EtitleExample 3 Solve the IVP

$$y' = \begin{pmatrix} 1 & -3 \\ 2 & 3 \end{pmatrix} y, \qquad y(0) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 (10)

► Eigenvalues of the coef. matrix A, are: given by

$$\begin{vmatrix} 1-r & -3 \\ 2 & 3-r \end{vmatrix} = 0 \Longrightarrow (1-r)(3-r)+6=0$$

So,

$$r^2 - 4r + 9 = 0 \Longrightarrow r = \frac{4 \pm \sqrt{16 - 36}}{2}$$

So,

$$r=2\pm\sqrt{5}i$$

Eigenvectors

Analytically, eigenvectors for $r = 2 + \sqrt{5}i$ is given by $(A - rI)\xi = 0$, which is

$$\begin{pmatrix} 1 - (2 + \sqrt{5}i) & -3 \\ 2 & 3 - (2 + \sqrt{5}i) \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

It follows:

$$\left(\begin{array}{cc} -1-\sqrt{5}i & -3 \\ 2 & 1-\sqrt{5}i \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right) \Longrightarrow$$

Continued

$$\left(\begin{array}{cc} 0 & 0 \\ 2 & 1 - \sqrt{5}i \end{array}\right) \left(\begin{array}{c} \xi_1 \\ \xi_2 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$$

Taking $\xi_2 = 2$, an eigen vector is

$$\xi^{(1)} = \begin{pmatrix} -(1-\sqrt{5}i) \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ 2 \end{pmatrix} + i \begin{pmatrix} \sqrt{5} \\ 0 \end{pmatrix}$$

Two Real Solutions

With $r=2+\sqrt{5}i$, we have $\lambda=2, \mu=\sqrt{5}$. By (6), we have tow real solutions:

$$\left\{ \begin{array}{l} \mathsf{u} = \mathsf{e}^{2t} \left(\left(\begin{array}{c} -1 \\ 2 \end{array} \right) \cos \sqrt{5} t - \left(\begin{array}{c} \sqrt{5} \\ 0 \end{array} \right) \sin \sqrt{5} t \right) \\ \mathsf{v} = \mathsf{e}^{2t} \left(\left(\begin{array}{c} -1 \\ 2 \end{array} \right) \sin \sqrt{5} t + \left(\begin{array}{c} \sqrt{5} \\ 0 \end{array} \right) \cos \sqrt{5} t \right) \end{array} \right.$$

Continued

We simplify:

$$\left\{ \begin{array}{l} \mathsf{u} = e^{2t} \left(\begin{array}{c} -\cos\sqrt{5}t - \sqrt{5}\sin\sqrt{5}t \\ 2\cos\sqrt{5}t \end{array} \right) \\ \mathsf{v} = e^{2t} \left(\begin{array}{c} -\sin\sqrt{5}t + \sqrt{5}\cos\sqrt{5}t \\ 2\sin\sqrt{5}t \end{array} \right) \end{array} \right.$$

The General solution

So, the general solutions is
$$y = c_1 u + c_2 v$$

$$= c_1 e^{2t} \begin{pmatrix} -\cos\sqrt{5}t - \sqrt{5}\sin\sqrt{5}t \\ 2\cos\sqrt{5}t \end{pmatrix}$$

$$+ c_2 e^{2t} \begin{pmatrix} -\sin\sqrt{5}t + \sqrt{5}\cos\sqrt{5}t \\ 2\sin\sqrt{5}t \end{pmatrix} =$$

$$e^{2t} \begin{pmatrix} -\cos\sqrt{5}t - \sqrt{5}\sin\sqrt{5}t & -\sin\sqrt{5}t + \sqrt{5}\cos\sqrt{5}t \\ 2\cos\sqrt{5}t & 2\sin\sqrt{5}t \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}$$

Use Initial Values

Using initial conditions:

$$\left(\begin{array}{cc} -1 & \sqrt{5} \\ 2 & 0 \end{array}\right) \left(\begin{array}{c} c_1 \\ c_2 \end{array}\right) = \left(\begin{array}{c} 1 \\ 1 \end{array}\right)$$

So,
$$c_1 = \frac{1}{2}$$
, $c_2 = \frac{3}{2\sqrt{5}}$

Answer

The particular solutions is: y =

$$e^{2t} \left(\begin{array}{cc} -\cos\sqrt{5}t - \sqrt{5}\sin\sqrt{5}t & -\sin\sqrt{5}t + \sqrt{5}\cos\sqrt{5}t \\ 2\cos\sqrt{5}t & 2\sin\sqrt{5}t \end{array} \right) \left(\begin{array}{c} \frac{1}{2} \\ \frac{3}{2\sqrt{5}} \end{array} \right)$$