# Chapter 6 Inner Product Spaces §6.2 Inner product spaces

Satya Mandal

U. Kansas

Arrowtic K-Theory

Fall 2025



## Goals

- ▶ Concept of length, distance, and angle in  $\mathbb{R}^2$  or  $\mathbb{R}^n$  is extended to abstract vector spaces V. Such vector spaces will be called Inner Product Spaces.
- An Inner Product Space V comes with an inner product, similar to dot product in  $\mathbb{R}^n$ .
- ► The Euclidean space  $\mathbb{R}^n$  is only an example of such Inner Product Spaces.

#### Inner Product

Definition Suppose V is a vector space.

An inner product on V is a function

$$\langle *, * \rangle : V \times V \rightarrow \mathbb{R}$$
 that associates

to each ordered pair  $(\mathbf{u}, \mathbf{v})$  of elements in V, a real number  $\langle \mathbf{u}, \mathbf{v} \rangle$ , such that  $\forall \mathbf{u}, \mathbf{v}, \mathbf{w}$  in V and scalars c, we have

- 1.  $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ .
- 2.  $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$ .
- 3.  $c\langle \mathbf{u}, \mathbf{v} \rangle = \langle c\mathbf{u}, \mathbf{v} \rangle$ .
- 4.  $\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$  and  $v = 0 \iff \langle \mathbf{v}, \mathbf{v} \rangle = 0$ .
- ► The vector space *V* with such an inner product is called an inner product space.

## Theorem 6.2.1: Properties

Let V be an inner product space.

Let  $\mathbf{u}, \mathbf{v} \in V$  be two vectors and c be a scalar, Then

- 1.  $\langle \mathbf{0}, \mathbf{v} \rangle = 0$
- 2.  $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$
- 3.  $\langle \mathbf{u}, c\mathbf{v} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$

**Proof.** We would have to use the properties in the definition.

- 1. Use (Property 3):  $\langle \mathbf{0}, \mathbf{v} \rangle = \langle 0\mathbf{0}, \mathbf{v} \rangle = 0 \langle \mathbf{0}, \mathbf{v} \rangle = 0$ .
- 2. Use commutativity (1) and (2):  $\langle \mathbf{u}+\mathbf{v},\mathbf{w}\rangle = \langle \mathbf{w},\mathbf{u}+\mathbf{v}\rangle = \langle \mathbf{w},\mathbf{u}\rangle + \langle \mathbf{w},\mathbf{v}\rangle = \langle \mathbf{u},\mathbf{w}\rangle + \langle \mathbf{v},\mathbf{w}\rangle$
- 3. Use (1) and (3):  $\langle \mathbf{u}, c\mathbf{v} \rangle = \langle c\mathbf{v}, \mathbf{u} \rangle = c \langle \mathbf{v}, \mathbf{u} \rangle = c \langle \mathbf{u}, \mathbf{v} \rangle$

The proofs are complete.



#### **Definitions**

Definitions Let V be an inner product space and  $\mathbf{u}, \mathbf{v} \in V$ .

1. The length or norm of  $\mathbf{v}$  is defined as

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}.$$

2. The distance between  $\mathbf{u}, \mathbf{v} \in V$  is defined as

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

3. The angle  $\theta$  between  $\mathbf{u}, \mathbf{v} \in V$  is defined by the formula:

$$\cos \theta = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\|\mathbf{u}\| \|\mathbf{v}\|} \qquad 0 \le \theta \le \pi.$$

A version of Cauchy-Swartz inequality, to be given later, would assert that right side is between -1 and 1.



# Theorem(s) 6.2.2

Let V be an inner product space and  $\mathbf{u}, \mathbf{v} \in V$ . Then

- 1. Cauchy-Schwartz Inequality:  $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$ .
- 2. Triangle Inequality:  $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ .
- (Definition) We say that u, v are (mutually) orthogonal or perpendicular, if

$$\langle \mathbf{u}, \mathbf{v} \rangle = 0$$
. We write  $\mathbf{u} \perp \mathbf{v}$ .

4. Pythagorean Theorem. If  $\mathbf{u}, \mathbf{v}$  are orthogonal, then

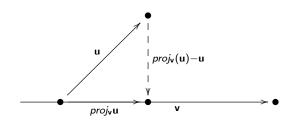
$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

**Proof.** Exactly similar to the theorems in §6.1 for  $\mathbb{R}^n$ .



# Orthogonal Projection

**Definition.** Let V be an inner product space. Let  $\mathbf{v} \in V$  and  $\mathbf{v} \neq \mathbf{0}$ . For  $\mathbf{u} \in V$  define Orthogonal Projection of  $\mathbf{u}$  on to  $\mathbf{v}$ :  $proj_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v}$ 



#### Theorem 6.2.3

Let V be an inner product space. Let  $\mathbf{v} \in V$  and  $\mathbf{v} \neq \mathbf{0}$ Then  $(\mathbf{u} - proj_{\mathbf{v}}(\mathbf{u})) \perp proj_{\mathbf{v}}(\mathbf{u})$ . **Proof.** 

$$\begin{split} \langle \mathbf{u} - \textit{proj}_{\mathbf{v}}(\mathbf{u}), \textit{proj}_{\mathbf{v}}(\mathbf{u}) \rangle &= \left\langle \mathbf{u} - \left( \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \right), \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \right\rangle \\ &= \left\langle \mathbf{u}, \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \right\rangle - \left\langle \left( \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \right), \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} \right\rangle \\ &= \frac{\langle \mathbf{v}, \mathbf{u} \rangle^2}{\|\mathbf{v}\|^2} - \frac{\langle \mathbf{v}, \mathbf{u} \rangle^2}{\|\mathbf{v}\|^4} \langle \mathbf{v}, \mathbf{v} \rangle = 0 \end{split}$$

The proof is complete.



- **Remark.** If  $\mathbf{v} = (1,0)$  (or on x-axis) and  $\mathbf{u} = (x,y)$ , then  $proj_{\mathbf{v}}\mathbf{u} = (x,0)$ .
- ▶ (1) The Obvious Example: With dot product as the inner product, the Euclidean n—space  $\mathbb{R}^n$  is an inner product space.

# Examples 6.2.2: Integration

Integration is a great way to define inner product.

Let V = C[a, b] be the vector space of all continuous functions  $f : [a, b] \to \mathbb{R}$ . For  $f, g \in C[a, b]$ , define inner product

$$\langle f,g\rangle=\int_a^b f(x)g(x)dx.$$

It is easy to check that  $\langle f, g \rangle$  satisfies the properties of inner product spaces. Namely,

- 1.  $\langle f, g \rangle = \langle g, f \rangle$ , for all  $f, g \in C[a, b]$ .
- 2.  $\langle f, g + h \rangle = \langle f, g \rangle + \langle f, h \rangle$ , for all  $f, g, h \in C[a, b]$ .
- 3.  $c\langle f,g\rangle=\langle cf,g\rangle$ , for all  $f,g\in C[a,b]$  and  $c\in\mathbb{R}$ .
- 4.  $\langle f, f \rangle \ge 0$  for all  $f \in C[a, b]$  and  $f = 0 \Leftrightarrow \langle f, f \rangle = 0$ .



Accordingly, for  $f \in C[a, b]$ , we can define length (or norm)

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_a^b f(x)^2 dx}.$$

This 'length' of continuous functions would have all the properties that you expect "length" or "magnitude" to have.

# Examples 6.2.2A: Double Integration

Let  $D \subseteq \mathbb{R}^2$  be any connected region.

Let V = C(D) be the vector space of all bounded continuous functions  $f(x, y) : D \to \mathbb{R}$ . For  $f, g \in V$  define inner product

$$\langle f,g\rangle = \int \int_D f(x,y)g(x,y)dxdy.$$

As in Example 6.2.2, it is easy to check that  $\langle f,g\rangle$  satisfies the properties of inner product spaces.

In this case, length or norm of  $f \in V$  is given by

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int \int_D f(x, y)^2 dx dy}.$$

#### In particular:

**Example a:** If  $D = [a, b] \times [c, d]$ , then

$$\langle f,g\rangle = \int_{c}^{d} \int_{a}^{b} f(x,y)g(x,y)dxdy.$$

**Example b:** If *D* is the unit disc:

$$D = \{(x, y) : x^2 + y^2 \le 1\}$$
, then for  $f, g \in C(D)$  is:

$$\langle f,g\rangle = \int \int_{\Omega} f(x,y)g(x,y)dxdy.$$

$$= \int_{-1}^{1} \int_{-\sqrt{1-y^2}}^{\sqrt{1-y^2}} f(x,y)g(x,y)dxdy$$



In  $\mathbb{R}^2$ , define an inner product (as above): for  $\mathbf{u} = (u_1, u_2)$ ,  $\mathbf{v} = (v_1, v_2)$  define  $\langle \mathbf{u}, \mathbf{v} \rangle = 2(u_1v_1 + u_2v_2)$ . It is easy to check that this is an Inner Product on  $\mathbb{R}^2$  (we skip the proof.) Let  $\mathbf{u} = (1, 3)$ ,  $\mathbf{v} = (2, -2)$ .

▶ (1) Compute  $\langle \mathbf{u}, \mathbf{v} \rangle$ . Solution:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 2(u_1v_1 + u_2v_2) = 2(2-6) = -8$$

► (2) Compute  $\|\mathbf{u}\|$  . Solution:

$$\|\mathbf{u}\| = \sqrt{\langle \mathbf{u}, \mathbf{u} \rangle} = \sqrt{2(u_1u_1 + u_2u_2)} = \sqrt{2(1+9)} = \sqrt{20}.$$



► (3) Compute  $\|\mathbf{v}\|$ . Solution:

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} 
angle} = \sqrt{2(4+4)} = 4$$

▶ (4) Compute  $d(\mathbf{u}, \mathbf{v})$ . Solution:

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \|(-1, 5)\|$$
  
=  $\sqrt{2(1+25)} = \sqrt{52}$ .

Let V = C[0,1] with inner product

$$\langle f,g\rangle = \int_0^1 f(x)g(x)dx$$
 for  $f,g,\in V$ .

Let f(x) = 2x and  $g(x) = x^2 + x + 1$ .

▶ (1) Compute  $\langle f, g \rangle$ . **Solution:** We have

$$\langle f, g \rangle = \int_0^1 f(x)g(x)dx = \int_0^1 2(x^3 + x^2 + x) dx$$

$$=2\left[\frac{x^4}{4} + \frac{x^3}{3} + \frac{x^2}{2}\right]_{0.00}^{1} = 2\left[\frac{1}{4} + \frac{1}{3} + \frac{1}{2}\right] - 0 = \frac{13}{6}$$



▶ (2) Compute norm ||f||. Solution: We have

$$||f|| = \sqrt{\langle f, f \rangle} = \sqrt{\int_0^1 f(x)^2 dx} = \sqrt{\int_0^1 4x^2 dx}$$
$$= \sqrt{4 \left[\frac{x^3}{3}\right]_{x=0}^1} = \sqrt{\frac{4}{3} - 0} = 2\sqrt{\frac{1}{3}}$$

▶ (3) Compute norm ||g||. **Solution:** We have

$$||g|| = \sqrt{\langle g, g \rangle} = \sqrt{\int_0^1 g(x)^2 dx} = \sqrt{\int_{-1}^1 (x^2 + x + 1)^2 dx}$$
$$= \sqrt{\int_0^1 (x^4 + 2x^3 + 3x^2 + 2x + 1) dx}$$
$$= \sqrt{\left[\frac{x^5}{5} + 2\frac{x^4}{4} + 3\frac{x^3}{3} + 2\frac{x^2}{2} + x\right]_0^1}$$

$$=\sqrt{\left[\frac{1}{5}+2\frac{1}{4}+3\frac{1}{3}+2\frac{1}{2}+1\right]-0}=\sqrt{\frac{37}{10}}$$

(4) Compute d(f,g). **Solution:** We have d(f,g) = ||f - g|| =

$$\sqrt{\langle f - g, f - g \rangle} = \sqrt{\int_0^1 (-x^2 + x - 1)^2 dx}$$

$$= \sqrt{\int_0^1 (x^4 - 2x^3 + 3x^2 - 2x + 1) dx}$$

$$= \sqrt{\left[\frac{x^5}{5} - 2\frac{x^4}{4} + 3\frac{x^3}{3} - 2\frac{x^2}{2} + x\right]_0^1}$$

$$=\sqrt{\left[\frac{1}{5}-2\frac{1}{4}+3\frac{1}{3}-2\frac{1}{2}+1\right]-0}=\sqrt{\frac{7}{10}}$$

Let  $V = C[-\pi, \pi]$  with inner product  $\langle f, g \rangle$  as in

Example 6.2.2 (by definite integral).

Let  $f(x) = x^3$  and  $g(x) = x^2 - 3$ .

Show that f and g are orthogonal.

**Solution:** We have to show that  $\langle f, g \rangle = 0$ . We have  $\langle f, g \rangle =$ 

$$\int_{-\pi}^{\pi} f(x)g(x)dx = \int_{-\pi}^{\pi} x^3(x^2 - 3)dx = \int_{-\pi}^{\pi} (x^5 - 3x^3 dx)$$
$$= \left[\frac{x^6}{6} - \frac{x^4}{4}\right]_{-\pi}^{\pi} = 0.$$

So,  $f \perp g$ .



Exercise Let  $\mathbf{u} = (\sqrt{2}, \sqrt{2})$  and  $\mathbf{v} = (3, -4)$ .

- ightharpoonup Compute  $proj_{\mathbf{v}}(\mathbf{u})$  and  $proj_{\mathbf{u}}(\mathbf{v})$
- **Solution**. First  $\langle \mathbf{u}, \mathbf{v} \rangle = \sqrt{2} * 3 \sqrt{2} * 4 = -\sqrt{2}$ ,

$$\|\mathbf{u}\| = \sqrt{\sqrt{2}^2 + \sqrt{2}^2} = 4, \quad \|\mathbf{v}\| = \sqrt{3^2 + (-4)^2} = 5$$

$$proj_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v} = -\sqrt{2}(3, -4) = \left(-3\sqrt{2}, 4\sqrt{2}\right)$$

$$\textit{proj}_{\mathbf{u}}(\mathbf{v}) = \frac{\langle \mathbf{u}, \mathbf{v} \rangle}{\left\| \mathbf{u} \right\|^2} \mathbf{u} = -\sqrt{2}(\sqrt{2}, \sqrt{2}) = (-2, -2)$$

Let V = C[0,1] with inner product

$$\langle f,g\rangle=\int_0^1f(x)g(x)dx$$
 for  $f,g,\in V$ .

Let f(x) = 2x and  $g(x) = x^2 + x + 1$ .

Compute the orthogonal projection of f onto g, and the orthogonal projection of g onto f.

**Solution** In Example 6.2.4, we worked with these two functions f, g. We have

$$\langle f, g \rangle = \frac{13}{6}, \quad \|f\| = 2\sqrt{\frac{1}{2}}, \|g\| = \sqrt{\frac{37}{10}}$$

$$proj_f(g) = \frac{\langle g, f \rangle}{\|f\|^2} f = \frac{\frac{13}{6}}{2} (2x) = \frac{13}{6} x$$

Also,

$$proj_{g}(f) = rac{\langle g, f 
angle}{\left\|g
ight\|^{2}}g = rac{rac{13}{6}}{rac{37}{10}}(x^{2} + x + 1) = rac{130}{222}(x^{2} + x + 1)$$

Let V = C[0,1] with inner product  $\langle f,g \rangle$  as in Example 6.2.2 (by definite integral).

Let 
$$f(x) = x^3 + x$$
 and  $g(x) = 2x + 1$ .

Compute the orthogonal projection of f onto g.

**Solution** Recall the definition:  $proj_{\mathbf{v}}(\mathbf{u}) = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{v}\|^2} \mathbf{v}$  So,

$$proj_{g}(f) = \frac{\langle g, f \rangle}{\|g\|^{2}}g$$

First compute  $\langle g, f \rangle =$ 

$$\int_0^1 (x^3 + x)(2x + 1) dx \int_0^1 (2x^4 + x^3 + 2x^2 + x) dx$$



$$= \left[2\frac{x^5}{5} + \frac{x^4}{4} + 2\frac{x^3}{3} + \frac{x^2}{2}\right]_0^1 = \frac{109}{60}$$

$$\blacktriangleright \text{ So } \langle g, f \rangle = \frac{109}{60}$$

Now compute  $||g||^2 =$ 

$$\int_0^1 (2x+1)^2 dx = \int_{-1}^1 (4x^2+4x+1) dx = \left[ 4\frac{x^3}{3} + 4\frac{x^2}{2} + x \right]_0^1$$
$$= \left( 4\frac{1}{3} + 4\frac{1}{2} + 1 \right) - 0 = \frac{13}{3}$$

► So,

$$proj_{g}(f) = rac{\langle g, f 
angle}{\|g\|^{2}}g = rac{rac{109}{60}}{rac{13}{3}}(2x+1) = rac{109}{260}(2x+1)$$