Chapter 4 Vector Spaces §4.5 Basis and Dimension

Satya Mandal

U. Kansas

Arrowtic K-Theory
Fall 2025

Goals

Discuss two related important concepts:

- \triangleright Define Basis of a Vectors Space V.
- ightharpoonup Define Dimension dim(V) of a Vectors Space V.

Definition:Linear Independence of infinite sets

In fact, we defined linear independence of finite sets S, only. Before we proceed, we define the same for infinite sets.

Definition. Suppose V is a vector space and $S \subseteq V$ is a subset (possibly infinite).

We say S is Linearly Independent, if any finite subset $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subseteq S$ is linearly independent.

That means, for any finite subset $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\} \subseteq S$ and scalars c_1, \dots, c_n ,

$$c_1\mathbf{v}_1, +c_2\mathbf{v}_2+\cdots+c_n\mathbf{v}_n=\mathbf{0} \Longrightarrow c_1=c_2=\cdots=c_n=0.$$

Basis

Let V be a vector space (over \mathbb{R}).

A set S of vectors in V is called a basis of V if

- 1. V = Span(S) and
- 2. *S* is linearly independent.
- ▶ In words, we say that S is a basis of V if S spans V and if S is linearly independent.
- ► First note, it would need a proof (i.e. it is a theorem) that any vector space has a basis. The proof requires Zorn's lemma and beyond the scope of this course.

Continued

- ► The definition of basis does not require that *S* is a finite set.
 - However, we will only deal with situations when $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ is a finite set.
 - ▶ If V has a finite basis $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$, then we say that V is finite dimensional. Otherwise, we say that V is infinite dimensional.

The set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ is a basis of the 3-space \mathbb{R}^3 .

Proof. We have seen, in § 4.4 that S is spans \mathbb{R}^3 and it is linearly independent. We repeat the proof.

▶ Given any $(x, y, z) \in \mathbb{R}^3$ we have

$$\begin{cases} (x, y, z) = x(1, 0, 0) + y(0, 1, 0) + z(0, 0, 1). \\ \forall (x, y, z) \in \mathbb{R}^3, \quad (x, y, z) \in span(S) \\ So \quad \mathbb{R}^3 = Span(S) \end{cases}$$

Also, S us linearly independent; because

$$a(1,0,0)+b(0,1,0)+c(0,0,1)=(0,0,0) \Longrightarrow a=b=c=0.$$

So, S is a basis of \mathbb{R}^3 .

Similarly, a basis of the n-space \mathbb{R}^n is given by the set

$$S = \{\mathbf{e_1}, \mathbf{e_2}, \dots, \mathbf{e_n}\}$$
where,
$$\begin{cases}
\mathbf{e_1} = (1, 0, 0, \dots, 0) \\
\mathbf{e_2} = (0, 1, 0, \dots, 0) \\
\mathbf{e_3} = (0, 0, 1, \dots, 0) \\
\dots \\
\mathbf{e_n} = (0, 0, 0, \dots, 1)
\end{cases}$$
(1)

This one is called the standard basis of \mathbb{R}^n .

The set $S = \{(1, -1, 0), (1, 1, 0), (1, 1, 1)\}$ is a basis of \mathbb{R}^3 .

Proof.

First we prove $Span(S) = \mathbb{R}^3$. Let $(x, y, z) \in \mathbb{R}^3$. We need to find a, b, c such that

$$(x, y, z) = a(1, -1, 0) + b(1, 1, 0) + c(1, 1, 1)$$

So,

$$\begin{pmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}. \quad \textit{Notationally} \quad \textit{A}\mathbf{a} = \mathbf{v}$$

Continued

Using TI - 84,
$$\begin{vmatrix} 1 & 1 & 1 \\ -1 & 1 & 1 \\ 0 & 0 & 1 \end{vmatrix} = 2 \neq 0$$

So, the above system has a solution.

Therefore $(x, y, z) \in span(S)$. So, $span(S) = \mathbb{R}^3$.

Remark. We could so the same, by long calculation.

Now, we prove S is linearly independent. Let

$$a(1,-1,0) + b(1,1,0) + c(1,1,1) = (0,0,0).$$

In the matrix from, this equation is

$$A \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$
 where A is as above.

where A is as above. Since, $|A| = 2 \neq 0$,

$$\left(\begin{array}{c} a \\ b \\ c \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right)$$

So, S is linearly independent.

Since, $span(S) = \mathbb{R}^3$ and S is linearly independent, S forms a bais of \mathbb{R}^3 .

Let P_3 be a vector space of all polynomials of degree less of equal to 3. Then $S = \{1, x, x^2, x^3\}$ is a basis of P_3 . **Proof.** Clearly $span(S) = P_3$. Also S is linearly independent, because

$$a1 + bx + cx^2 + dx^3 = 0 \implies a = b = c = d = 0.$$

(Why?)

▶ Let $\mathbb{M}_{3,2}$ be the vector space of all 3 × 2 matrices. Let

$$A_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, A_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{pmatrix}, A_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$A_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}, A_{3,1} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \end{pmatrix}, A_{3,2} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Then

$$A = \{A_{11}, A_{12}, A_{2.1}, A_{2.2}, A_{3.1}, A_{3.2}\}$$

is a basis of $M_{3,2}$.

Theorem 4.5.1

Theorem 4.5.1(Uniqueness of basis representation): Let V be a vector space and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ be a basis of V. Then any vector $\mathbf{v} \in V$ can be written in one and only one way as linear combination of vectors in S.

Proof. Suppose $\mathbf{v} \in V$. Since Span(S) = V

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \cdots + a_n \mathbf{v_n}$$
 where $a_i \in \mathbb{R}$.

Now suppose there are two ways:

$$\mathbf{v} = a_1 \mathbf{v_1} + a_2 \mathbf{v_2} + \dots + a_n \mathbf{v_n}$$
 and $\mathbf{v} = b_1 \mathbf{v_1} + b_2 \mathbf{v_2} + \dots + b_n \mathbf{v_n}$

We will prove $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$.

Subtracting
$$\mathbf{0} = (a_1 - b_1)\mathbf{v_1} + (a_2 - b_2)\mathbf{v_2} + \dots + (a_n - b_n)\mathbf{v_n}$$

Since, *S* is linearly independent,

$$a_1 - b_1 = 0, a_2 - b_2 = 0, \dots, a_n - b_n = 0$$
 or

 $a_1 = b_1, a_2 = b_2, \dots, a_n = b_n$. The proof is complete.

Theorem 4.5.2

Theorem 4.5.2 (Bases and cardinalities) Let V be a vector space and $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ be a basis of V, containing n vectors. Then any set containing more than n vectors in V is linearly dependent.

Proof.Let $T = \{\mathbf{u_1}, \mathbf{u_2}, \dots, \mathbf{u_m}\}$ be set of m vectors in V with m > n. For simplicity, assume n = 3 and m = 4. So, $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ and $T = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$. To prove that T is dependent, we will have to find scalars a_1, a_2, a_3, a_4 , not all zeros, such that not all zero,

$$a_1$$
u₁ + a_2 **u**₂ + a_3 **u**₃ + a_4 **u**₄ = **0** Equation – I

We are required to show, Equation-I has non-trivial solution (meaning with some $a_i \neq 0$).

Continued

Since S is a basis we can write

We substitute these in Equation-I and re-group:

Since $S = \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}\}$ is linearly independent, the coefficients of $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$ are zero. So, we have (in the next frame):

Continued

$$c_{11}a_1 + c_{21}a_2 + c_{31}a_3 + c_{41}a_4 = 0$$

 $c_{12}a_1 + c_{22}a_2 + c_{32}a_3 + c_{42}a_4 = 0$
 $c_{13}a_1 + c_{23}a_2 + c_{33}a_3 + c_{43}a_4 = 0$

In matrix notation:

$$\begin{pmatrix} c_{11} & c_{21} & c_{31} & c_{41} \\ c_{12} & c_{22} & c_{32} & c_{42} \\ c_{13} & c_{23} & c_{33} & c_{43} \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

This is a system of three homogeneous linear equations in four variables. (less equations than number of variable. So, the system has non-trivial (infinitely many) solutions. So, there are a_1, a_2, a_3, a_4 , not all zeros, so that Equation-I is valid. So, $T = \{\mathbf{u_1}, \mathbf{u_2}, \mathbf{u_3}, \mathbf{u_4}\}$ is linearly dependent. The proof is complete.

Theorem 4.5.3

Suppose V is a vector space. If V has a basis with n elements then all bases have n elements.

Proof. Suppose $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ and

 $T = \{u_1, u_2, \dots, u_m\}$ are two bases of V.

Since, the basis S has n elements, and T is linealry independent, by the theorem above m cannot be bigger than n. So, m < n.

By switching the roles of S and T, we have $n \le m$. So, m = n. The proof is complete.

Dimension of Vector Spaces

Definition. Let V be a vector space. Suppose V has a basis $S = \{\mathbf{v_1}, \mathbf{v_2}, \dots, \mathbf{v_n}\}$ consisting of n vectors. Then we say n is the dimension of V and write

$$\dim(V) = n$$
.

If $V = \{\mathbf{0}\}$ consists of the zero vector only, then the dimension of V is defined to be zero. $\dim (\{\mathbf{0}\}) = 0$.

We have

- From above example $\dim(\mathbb{R}^n) = n$.
- From above example $dim(P_3) = 4$. Similarly, $dim(P_n) = n + 1$.
- From above example $\dim(\mathbb{M}_{3,2}) = 6$. Similarly, $\dim(\mathbb{M}_{n,m}) = mn$.

Corollary 4.5.4: Dimensions of Subspaces

Corollary 4.5.4: Let V be a vector space and W be a subspace of V. Then

$$\dim(W) \leq \dim(V)$$
.

Proof. For simplicity, assume dim $V = n < \infty$.

We give a proof by contrapositive argument.

Suppose dim $W > n = \dim V$.

Then there is a basis $\mathbf{w}_1, \dots, \mathbf{w}_n, \mathbf{w}_{n+1}, \dots$ of W.

In particular, $\mathbf{w}_1, \dots, \mathbf{w}_n, \mathbf{w}_{n+1}$ is linearly independent.

Since dim V = n, by Theorem 4.5.2, $\mathbf{w}_1, \dots, \mathbf{w}_n \cdot \mathbf{w}_{n+1}$ is

linearly dependent. This is a contradiction. So, $\dim W \leq \dim V$. This completes the proof.

Going UP

Going UP Lemma: Suppose V is a vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of linearly independent elements in V. Suppose $\mathbf{v}_{k+1} \in V$ and $\mathbf{v}_{k+1} \notin Span(S)$. Then $S_{k+1} = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}\}$ is linearly independent. **Proof.** Given in the end of last section.

Going UP

Going UP Lemma 2 Suppose V is a vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ be a set of linearly independent elements in V. Then S extends to a linearly independent set

$$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k; \mathbf{v}_{k+1}, \cdots, \mathbf{v}_n, \cdots$$

The process stops when $n = \dim V$; and we get a basis. If dim $V=\infty$ the process continues for ever. **Proof.** Follows from Lemma UP.

Going Down

Going Down Lemma: Suppose V is a vector space and $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_N\}$ be a set of vectors and V = Span(S). Suppose dim V = n. Then we can **drop elements of** S **one-by-one**, and obtain a subset $\{\mathbf{v}_{i_1}, \mathbf{v}_{i_2}, \cdots, \mathbf{v}_{i_n}\} \subseteq S$ which is a **basis** of V. **Proof.**

- \triangleright S is a linearly independent then it is a basis and N=n.
- ▶ If not; S is linearly dependent. So, one of them is in the span of the rest. For simplicity (or relabeling them), assume $\mathbf{v}_N \in Span(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{N-1}\})$. Therefore $V = Span(\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{N-1}\})$.
- Now the process continues, until we obtain a linearly independent set. Thus we obtain a basis.

Theorem 4.5.5

(Basis Tests): Let V be a vector space and dim(V) = n.

- ▶ If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is a linearly independent set in V (consisting of n vectors), then S is a basis of V.
- ▶ If $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ spans V, then S is a basis of V

Proof.

- ▶ We first prove the first one. By going up Lemma we can extend $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ to a basis, by adding more vectors. Since dim V = n, S itself must be a basis.
- ▶ To prove the latter, use going down Lemma.

Corollary 4.5.6

Let V be a vector space and $\dim(V) = n < \infty$

- Suppose $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq V$ is a linearly independent set in V (consisting of m vectors). Then $m \leq n$ and S extends to a basis $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m, \mathbf{v}_{m+1}, \dots, \mathbf{v}_n\}$ of V.
- Suppose a set $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq V$ (consisting of m vectors), spans V. Then $m \geq n$ and there is a subset $T \subseteq S$, such that T is a basis of V

Proof. Follows from Going Up and Going Down Lemma.

Corollary 4.5.7

Let V be a vector space and Suppose $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m\} \subseteq V$ is a subset of V. Then

$$\dim(Span(S)) \leq m$$

Proof. By going down, Span(S) has a basis, which is a subset of S. So, $\dim(Span(S)) \leq m$.

Let
$$W = \{(x, y, 2x + 3y) : x, y \in \mathbb{R}\}$$

Then W is a subspace of \mathbb{R}^3 and $\dim(W)=2$. **Proof.**Note $\mathbf{0}=(0,0,0)\in W$, and W is closed under addition and scalar multiplication. So, W is a subspace of \mathbb{R}^3 . Given $(x,y,2x+3y)\in W$, we have

$$(x, y, 2x + 3y) = x(1, 0, 2) + y(0, 1, 3)$$

This shows $span(\{(1,0,2),(0,1,3)\}) = W$. Also $\{(1,0,2),(0,1,3)\}$ is linearly independent. So, $\{(1,0,2),(0,1,3)\}$ is a basis of W and $\dim(W) = 2$.

Let

$$S = \{(1,3,-2,13), (-1,2,-3,12), (2,1,1,1)\}$$

and W = span(S). Prove dim(W) = 2.

- **Proof.** Denote the three vectors in S by $\mathbf{v_1}, \mathbf{v_2}, \mathbf{v_3}$.
- ▶ Then $\mathbf{v_3} = \mathbf{v_1} \mathbf{v_2}$. Write $T = {\mathbf{v_1}, \mathbf{v_2}}$.
- ▶ It follows, any linear combination of vectors in *S* is also a linear combination of vectors in *T*.

So,
$$W = span(S) = span(T)$$
.

► Also T is linearly independent. So, T is a basis and dim(W) = 2.

- ▶ (Example) Let $S = \{(13,7), (-26,-14)\}$. Give a reason, why S is not a basis for \mathbb{R}^2 ?

 Answer: S is linearly dependent. This is immediate because the first vector is a multiple of the second.
- ► (Example)

Let
$$S = \{(5,3,1), (-2,3,1), (7,-8,11), (\sqrt{2},2,\sqrt{2})\}$$

Give a reason, why S is not a basis for \mathbb{R}^3 where **Answer:** Here $\dim(\mathbb{R}^3)=3$. So, any basis would have 3 vectors, while S has four.

Examples 4.5.8: Continues

▶ **Example**. Let $S = \{1 - x, 1 - x^2, 3x^2 - 2x - 1\}$. Give a reason, why S is not a basis for P_2 ?

Answer: dim $P_2 = 3$ and S has 3 elements. So, we have to give different reason. In fact, S is linearly dependent:

$$3x^2 - 2x - 1 = 2(1 - x) - 3(1 - x^2)$$

Examples 4.5.8: Continues

Example.

$$\text{Let} \quad S = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right] \right\}$$

Give a reason, why S is not a basis for \mathbb{M}_{22} , where **Answer:** $\dim(\mathbb{M}_{22}) = 4$ and S has 3 elements.

$$\mathrm{Let} \quad S = \left\{ \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right], \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right] \right\}$$

Does S form a basis for M_{22} , where

Answer: $\dim(\mathbb{M}_{22}) = 4$ and S has 4 elements. Further, S is linearly independent. So, S is a basis of \mathbb{M}_{22} . To see they are linearly independent: Let

$$a \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + b \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + c \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} + d \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\begin{bmatrix} a+b+c+d & c+d \\ b+d & a+b+c \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow a = b = c = d = 0$$

Basis of subspaces

Suppose V is subspace of \mathbb{R}^n , spanned by a few given vectors. To find a basis of V do the following:

- Form a matrix A with these vectors, as rows.
- ightharpoonup Then row space of A is V.
- ▶ A basis of the row space would be a basis of *V*, which also gives the dimension.

Let $S = \{(3,2,2), (6,5,-1), (1,1,-1)\}$. Find a basis of span(S), and dim(span(S)).

Solution. Form the matrix A, with these rows.

$$A = \left(\begin{array}{ccc} 3 & 2 & 2 \\ 6 & 5 & -1 \\ 1 & 1 & -1 \end{array}\right)$$

Solution: We try to reduce the matrix, to a matrix essentially in Echelon form.

Continued

Switch first and third rows:

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
6 & 5 & -1 \\
3 & 2 & 2
\end{array}\right)$$

Subtract 6 times 1^{st} row, from 2^{nd} and 3 times 1^{st} row, from 3^{rd} :

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & -1 & 5
\end{array}\right)$$

Continued

Subtract 2^{nd} row from 3^{rd} :

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & 0 & 0
\end{array}\right)$$

The matrix is essentially in row Echelon form. So,

$$\begin{cases} \textit{Basis of span}(S) = \{(1, 1, -1), (0, -1, 5)\} \\ \dim(\textit{span}(S)) = 2 \end{cases}$$