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Appendix A

Advanced Linear Algebra

A.1 Groups

Definition A.1.1. A nonempty set G with a binary operation

o : G×G −→ G sending (x, y) 7→ xoy (or simply xy)

is called a group, if the following conditions are satisfied:

1. (Associativity:) ∀x, y, z ∈ G we have (xy)z = x(yz)

2. (Identity:) There is an element e ∈ G such that ex = xe = x ∀x ∈ G.

3. (Inverse:) Given x ∈ G there is an element y ∈ G such that xy = yx = e.

Further, a group G is called a commutative group, if

xy = yx ∀x, y ∈ G

A commutative group is also called an Abelian group (after the name of Niels Henrik
Abel). Notations: The notation xy is called the multiplicative notation. Additive nota-
tion x+ y is also used, more often in the case of commutative groups. Other notations are
also used, depending on the context.

In the multiplicative notation, it is more customary to denote identity by e = 1. In the
additive notation, it is more customary to denote identity by e = 0 (zero). However, all
these depend on the context, textbook and the instructors.
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4 APPENDIX A. ADVANCED LINEAR ALGEBRA

Example A.1.2. Let Z be the set of integers. Then Z is a group under addition +.

Example A.1.3. Let n ≥ 1 be an integers. Let GLn (R) be the set of all invertible
matrices A of order n. Then we GLn (R) is a group under multiplication.

Example A.1.4. Let V be a vector space and GL(V ) be the set of all isomorphisms
φ : V

∼−→ V . Then GL(V ) is a group under composition.

Example A.1.5. Let X ⊆ Rn be a subset of Rn. Let C(X) be the set of all real valued
continuous functions f : X −→ R. For f, g ∈ C(X) define f + g ∈ C(X), as follows

(f + g)(x) = f(x) + g(x) ∀x ∈ X

Then C(X) is a commutative group under this addition.

Example A.1.6. Let n ≥ 1 be an integers. Let Zn = {0, 1, 2, . . . , n− 1}. For x, y ∈ Zn

define addition

x+ y =

{
x+ y if x+ y ≤ n− 1

x+ y − n if x+ y ≥ n

Then Zn is a commutative group under this addition. This addition is called "residue
modulo n addition". (Ideally, we should use two different notations for + on two sides of
the above equation.)

Exercise A.1.7. Let G be a group. Prove that the identity e in the definition is unique.
In other words, if e, e ∈ G are such that{

ex = xe ∀x ∈ G

ex = xe ∀x ∈ G
Then e = e.

Exercise A.1.8. Let G be a group. Let x ∈ G. Then x inverse of x is unique. In other
words, if y1, y2 ∈ G such that{

y1x = xy1 = e

y2x = xy2 = e
Then y1 = y2.

In multiplicative notation, this unique inverse y is denoted by x−1.
In Additive notation, this unique inverse y is denoted by −x.
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A.2 Fields

In the context of Linear algebra, we are more interested in fields. The set of real numbers
R and the set of complex numbers C, are the model of a field.

Definition A.2.1. Let F be a nonempty set, with two binary operations, to be called
addition and multiplication:{

+ : F× F −→ F (x, y) 7→ x+ y

· : F× F −→ F (x, y) 7→ xy

For x, y ∈ F the addition will be denoted by x + y and multiplication will be denoted by
xy or x · y. We say that F is a field, if the addition and multiplication satisfy the following
properties:

1. (F,+) is a commutative group. (Zero 0 will denote the additive identiy. For x ∈ F,
−x will denote the additive inverse.)

2. Let F⋆ = {x ∈ F : x ̸= 0}. Then (F⋆, ·) a commutative group. The multiplicative
identity is denoted by 1 ∈ F⋆. For any x ∈ F, with x ̸= 0, the multiplicative inverse
is denoted by x−1 of 1

x
.

3. (Distributive:) Further,

∀x, y, z ∈ F x(y + z) = xy + xz

More verbosely, without using the concept of Groups, most textbooks define a field
(equivalently), as follows. We write it as a lemma:

Lemma A.2.2. Let F be a set with two binary operations + and ·:{
+ : F× F −→ F (x, y) 7→ x+ y

· : F× F −→ F (x, y) 7→ xy

Then F, together with these two operations, is a field if and only if, the following properties
are satisfied:

1. The additive properties:

(a) (Associativity of +:) ∀x, y, z ∈ F we have

(x+ y) + z = x+ (y + z)
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(b) (Additive Identity:) There is an element 0 ∈ F such that

0 + x = x+ 0 = x ∀x ∈ F

(c) (Additive Inverse:) Given x ∈ F there is an element y ∈ F such that

x+ y = y + x = 0

(d) (Additive Commutativity:)

∀x, y ∈ F x+ y = y + x

(For x ∈ F, −x will denote the additive inverse.)

2. Multiplicative properties:

(a) (Associativity of ·:) ∀x, y, z ∈ F we have

(xy)z = x(yz)

(b) (Additive Identity:) There is an element 1 ∈ F such that

1 · x = x · 1 = x ∀x ∈ F

(c) (Multiplicative Inverse:) Given x ∈ F, with x ̸= 0 there is an element y ∈ F
such that

xy = yx = 1

This inverse y is denoted by x−1 or 1
x
.

(d) (Multiplicative Commutativity:)

∀x, y ∈ F xy = yx

3. (Distributive:) Further,

∀x, y, z ∈ F x(y + z) = xy + xz

Example A.2.3. Let 

R = set of all real numbers

C = set of all complex numbers

Q = set of all rational numbers

I = set of all irrational numbers

Z = set of all integers

Then R, C, Q are fields. But Z is not a field; nor is I.
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Example A.2.4. Let p ≥ 2 be a prime number and

Zp = {0, 1, 2, . . . , p− 1} .

For x, y ∈ Zp, by division algorithm, we have{
x+ y = pna + ra 0 ≤ ra ≤ p− 1, na integer

xy = pnm + rm 0 ≤ rm ≤ p− 1, nm integer

Define a (new) addition and multiplication on Zp as follows:

x+ y := ra xy := rm

(Ideally, we should use a different notation for + and xy. These are called addition and
multiplication modulo p.)
Then, Zp is a field under this addition and multiplication.

A.2.1 Vector spaces over fields F

Recall that the set of real numbers R, is a field (under addition + and multiplication ·).
In the elementary linear algebra courses, usually the Vectors spaces over the field of real
numbers R are taught. We can define vectors spaces over any field F. So, we can talk
about vector spaces over C, over Q, over Zp and any other field. For completeness, I define
vector spaces over any given field F. (The definition will be same as the vectors spaces over
R, by replacing R by F. )

Definition A.2.5. Let F be a field. Suppose V is a non empty, with a two operations
(vector addition and scalar multiplication):{

+ : V × V −→ V (u,v) 7→ u+ v vector addition

· : F× V −→ V (c,v) 7→ cv scalar multiplication
(A.1)

(So, we are dealing with two additions, one addition + on F, one vector addition + on
V . Further, there is a multiplication/product on F and a scalar multiplication on V . Any
element c ∈ F will be called a scalar.)

We say V is a vector space over F, if the following holds:

1. The equation (A.1) can be alternately restated as: V is closed under addition and
scalar multiplication.

2. Additive properties of V :
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(a) (Associativity:) For u,v,w ∈ V , we have

(u+ v) +w = u+ (v +w)

(b) (Additive identity:) There is an element 0 ∈ V such that

∀ u ∈ V 0+ u = u

(c) (Additive Inverse:) Given any element u ∈ V there is an element y ∈ V such
that

u+ y = 0

(d) (Commutativity:)

∀ u,v ∈ V u+ v = v + u

3. Scalar multiplication properties:


c (u+ v) = cu+ cv ∀c ∈ F;∀u,v ∈ V Distributivity

(c+ d)u = cu+ du ∀c, d ∈ F; ∀u ∈ V Distributivity

(cd)u = c (du) ∀c, d ∈ F;∀u ∈ V Associativity

1 · u = u ∀u ∈ V scalar Identity

Exercise A.2.6. Let F be a field and V be a nonempty set with a addition + and a scaler
multiplication, as in (A.1). The V is a vector space over F if and only if

1. V is a commutative group under vector addition +.

2. Scalar multiplication properties:


c (u+ v) = cu+ cv ∀c ∈ F;∀u,v ∈ V Distributivity

(c+ d)u = cu+ du ∀c, d ∈ F;∀u ∈ V Distributivity

(cd)u = c (du) ∀c, d ∈ F;∀u ∈ V Associativity

1 · u = u ∀u ∈ V scalar Identity

Remark A.2.7. We extend most of what I do in undergraduate linear algebra course, as
follows for arbitrary fields:

1. Barring the chapter on Inner product spaces, almost everything I said about vector
spaces over R, works for vector spaces over any field F. This includes vector spaces
over C.
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2. Almost anything I said about Matrices, with real entries, works for matrices with
entries in a field F. Let Mm×n (F) denote the set of all matrices with entries in F.
For square matrices A ∈ Mn×n (F), we define determinant |A| in the same way. We
can define adjoint Adj(A) in the same way. It follows, in the same way

A (Adj(A)) = (Adj(A))A = |A|In

If |A| ≠ 0 then the inverse

A−1 =
1

|A|
(Adj(A))

3. The idea of inner product does not extend, because R has a order relationship a ≤ b,
while that is absent in other fields F. We can talk about length of vector in a
meaningful way, for vectors over R.

While the idea of vector spaces works for vector spaces over C, the definitions need
to be fine tuned a little.

Example A.2.8. Here are some examples.

1. Let F be a field. Then Fn is a vector space over F.

2. F be a field. Let X be an indeterminate (symbol). For integers n ≥ 1 let Xn is also
a symbol, Let

F[X] =
{
a0 + a1X + a2X

2 + · · ·+ anX
n : ai ∈ F, n ≥ 0

}
(We say F[X] is the set of all polynomials over F.)
Then F[X] is a vector space over F.

3. Here are some more:

(a) C is vector space over Q.

(b) C is vector space over R.

(c) R is vector space over Q.

A.2.2 Division Algebra and Quaternions

In a field F product is commutative xy = yx. By relaxing the definition of field, by
removing the condition on commutativity xy = yx, we obtain the definition of Devision
Algebra, as follows.
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Definition A.2.9. Let D be a nonempty set, with two binary operations, to be called
addition and multiplication:{

+ : D× D −→ D (x, y) 7→ x+ y

· : D× D −→ D (x, y) 7→ xy

For x, y ∈ D the addition will be denoted by x+y and multiplication will be denoted by xy

or x · y. We say that D is a Division Algebra, if the addition and multiplication satisfy
the following properties:

1. (D,+) is a commutative group. (Zero 0 will denote the additive identiy. For x ∈ F,
−x will denote the additive inverse.)

2. Let D⋆ = {x ∈ D : x ̸= 0}. Then (D⋆, ·) a group (not necessarily commutative). The
multiplicative identity is denoted by 1 ∈ D⋆. For any x ∈ D, with x ̸= 0, the
multiplicative inverse is denoted by x−1 of 1

x
.

3. (Distributive:) Further,

∀x, y, z ∈ F

{
x(y + z) = xy + xz

(x+ y)z = xz + yz

The most important example of Division algebra is the Quaternion Algebra, defined
as follows.

Definition A.2.10. Let Q = R4. Write
1 = (1, 0, 0, 0)

i = (0, 1, 0, 0)

j = (0, 0, 1, 0)

k = (0, 0, 0, 1)

They form a basis of Q

Given x = (x1, x2, x3, x4) ∈ Q, we can write

x = x11+ x2i+ x3j + x4k Likewise, let y = y11+ y2i+ y3j + y4k

Usually, 1 is omitted and we write 1 = 1 and i, j, k are treated as symbols. So, one writes

x = x1 + x2i+ x3j + x4k Likewise y = y1 + y2i+ y3j + y4k

Define
x+ y = (x1 + y1) + (x2 + y2)i+ (x3 + y3)j + (x4 + y4)k
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This addition is same as sum is Q = R4.

A product is defined by the following multiplication table:

1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

So, for x,y ∈ Q, as above

x · y =


(x1y1 − x2y2 − x3y3 − x4y4)+

(x1y2 + x2y1 + x3y4 − x4y3)i+

(x1y3 + x3y1 − x2y4 + x4y2)j+

(x1y4 + x4y1 + x2y3 − x3y2)k

Note, the product is not commutative ij ̸= ji. Then Q is a Division Algebra.

x−1 = (x1 + x2i+ x3j + x4k)
−1 =

x1 − x2i− x3j − x4k

x2
1 + x2

2 + x2
3 + x2

4

Thuis Q is known as the Quaternion Algebra.
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Appendix B

Rings and Modules

Rings are extension of the idea of Division algebras or fields. The modules are similar to
vectors spaces over rings.

B.1 Rings

Definition B.1.1. Let R be a nonempty set, with two binary operations, to be called
addition and multiplication:{

+ : R×R −→ R (x, y) 7→ x+ y

· : R×R −→ R (x, y) 7→ xy

For x, y ∈ R the addition will be denoted by x+y and multiplication will be denoted by xy

or x · y. We say that R is a Ring, if the addition and multiplication satisfy the following
properties:

1. (R,+) is a commutative group.
(Zero 0 will denote the additive identiy. For x ∈ R, −x will denote the additive
inverse.)

2. (Multiplicative Associativity:)

∀x, y, z ∈ R (xy)z = x(yz)

3. (Distributive:)

∀x, y, z ∈ R

{
x(y + z) = xy + xz

(x+ y)z = xz + yz

13
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4. There is a multiplicative identity, denoted by 1 ∈ R, such that

0 ̸= 1 ∀x ∈ R x · 1 = 1 · x = x

Definition B.1.2. Suppose R is a ring, and x ∈ R. We say, x has an inverse, if there in
an element y ∈ R such that xy = yx = 1.

Exercise B.1.3. Suppose R is a ring.

1. Let x ∈ R. If x has an inverse, then the inverse is unique. The inverse is denoted by
x−1 or 1

x
.

2. Let x ∈ R then 0 · x = 0 and x · 0 = 0.

3. Prove 0 does not have a multiplicative inverse.

Example B.1.4. Every Division Algebra is a ring.

As in the definition of Fields, more verbosely, without using the concept of Groups,
most textbooks define a ring (equivalently), as follows. We write it as a lemma:

Lemma B.1.5. Let R be a non empty set with two binary operations + and ·:{
+ : R×R −→ R (x, y) 7→ x+ y

· : R×R −→ R (x, y) 7→ xy

Then R, together with these two operations, is a field if and only if, the following properties
are satisfied:

1. The additive properties:

(a) (Associativity of +:) ∀x, y, z ∈ R we have

(x+ y) + z = x+ (y + z)

(b) (Additive Identity:) There is an element 0 ∈ R such that

0 + x = x+ 0 = x ∀x ∈ R

(c) (Additive Inverse:) Given x ∈ R there is an element y ∈ R such that

x+ y = y + x = 0
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(d) (Additive Commutativity:)

∀x, y ∈ R x+ y = y + x

(For x ∈ R, −x will denote the additive inverse.)

2. Multiplicative properties:

(a) (Associativity of ·:) ∀x, y, z ∈ R we have

(xy)z = x(yz)

(b) (Additive Identity:) There is an element 1 ∈ R such that

0 ̸= 1 and 1 · x = x · 1 = x ∀x ∈ R

3. (Distributive:) Further,

∀x, y, z ∈ R

{
x(y + z) = xy + xz

(x+ y)z = xz + yz

Remark B.1.6. Suppose R is a ring. Note that not all non zero x ∈ R has an inverse.
But if x has an inverse, then it is unique and is denoted by x1 or 1

x
. Ans invertible elements

x ∈ R, are called units of R.

Remark B.1.7. Let R be a ring. Let U(R) = {x ∈ R : x is invertible.}. Prove U(R) is a
group, under multiplication.

Example B.1.8. Let n ≥ 1 be an integer. Let R = Mn×n(R). Then R is a ring.

Definition B.1.9. Let R be a ring. We say R is a commutative ring is the multiplication
is commutative. This means

xy = yx ∀x, y ∈ R.

Note, R = Mn×n(R) is not commutative.

Example B.1.10. The set of integers Z is a commutative ring, under usual addition +

and multiplication. Note U(Z) = {−1, 1}.

I believe, motivation to define rings, came from the examples, similar to the following.
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Example B.1.11. Let [0, 1] denote the unit interval. Let R = C([0, 1]) denote the set of
continuous function f : [0, 1] −→ R. Notionally,

R = {f : [0, 1] −→ R : f is continuous}

For f, g ∈ R define addition and multiplication{
(f + g)(t) = f(t) + g(t) t ∈ [0, 1]

(fg)(t) = f(t)g(t) t ∈ [0, 1]

Then R is commutative ring. Resolve the following questions:

1. What is the additive zero of R.

2. What is the multiplicative identity of R.

3. Given f ∈ R, give a conditions when f has multiplicative inverse. Further, describe,
f−1, when exists.

4. Given as subset X ⊆ Rn, we can define R = C(X), as above. Convince yourself!

Exercise B.1.12. Let F be a field and F[X] be the set of all polynomials, with coefficients
in F (see example A.2.8). Addition was defined in (A.2.8). Define multiplication on F[X]

. Prove F [X] is a ring. Resolve the following:

1. What is the additive zero of F[X].

2. What is the multiplicative identity of F[X].

3. Describe the units U(F[X]) of F[X].

B.2 Modules

A module M over a ring R, extends the idea vector spaces over a field. In order to avoid
defining right-modules and left-modules, I will assume R is a commutative ring, in the
section. We imitate (literal copy and paste) the definition of vector spaces.

Definition B.2.1. Suppose R is a commutative ring. Suppose M is a non empty set, with
two operations (vector addition and scalar multiplication):{

+ : M ×M −→ M (u,v) 7→ u+ v vector addition

· : R×M −→ M (c,v) 7→ cv scalar multiplication
(B.1)
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(So, we are dealing with two additions, one addition + on R, one vector addition + on M .
Further, there is a multiplication/product on R and a scalar multiplication on M .)

We say M is a module over R, if the following holds:

1. The equation (B.1) can be alternately restated as: M is closed under addition and
scalar multiplication.

2. Additive properties of M :

(a) (Associativity:) For u,v,w ∈ M , we have

(u+ v) +w = u+ (v +w)

(b) (Additive identity:) There is an element 0 ∈ M such that

∀ u ∈ M 0+ u = u

(c) (Additive Inverse:) Given any element u ∈ M there is an element y ∈ M

such that
u+ y = 0

(This y is unique and is denoted by −u.)

(d) (Commutativity:)

∀ u,v ∈ M u+ v = v + u

3. Scalar multiplication properties:


c (u+ v) = cu+ cv ∀c ∈ R;∀u,v ∈ M Distributivity

(c+ d)u = cu+ du ∀c, d ∈ R;∀u ∈ M Distributivity

(cd)u = c (du) ∀c, d ∈ R;∀u ∈ M Associativity

1 · u = u ∀u ∈ M scalar Identity

A module M over R is also called an R-module.

Exercise B.2.2. Let R be a commutative ring and M be a nonempty set with a addition
+ and a scaler multiplication, as in (B.1). Then M is a module over R if and only if

1. M is a commutative group under vector addition +.
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2. Scalar multiplication properties:


c (u+ v) = cu+ cv ∀c ∈ R;∀u,v ∈ M Distributivity

(c+ d)u = cu+ du ∀c, d ∈ R;∀u ∈ M Distributivity

(cd)u = c (du) ∀c, d ∈ R;∀u ∈ M Associativity

1 · u = u ∀u ∈ M scalar Identity

Remark B.2.3. I have tacitly continued with the terminologies of vector spaces. However,
terminologies change a little, which you need to worry at this point.

The elements c ∈ R are thought of as functions; not so much as a scalars.

Remark B.2.4. Let R be a commutative ring. Since there are non-zero non-units x ̸= 0,
in R, unlike in a field, a lot of vector space like properties fail for modules M over R. (This
gives us a lot of opportunity for research.) We list a few:

1. Let M be an R-module. Then M need not have a basis.

2. If M has a basis, we say that M is a Free R-module.

3. (Example:) For any commutative ring R, easiest example of an R-module is M =

Rn. Actually, M = Rn is a free module.

4. (Example:) The set of real numbers R is a Z-module.
The set of complex numbers C is a Z-module.

B.3 Polynomial rings

Unless we know more rings, we would not know better examples of modules. So, we define
polynomial rings over commutative rings.

Definition B.3.1. Suppose R is a commutative ring. Let {Xn : n = 1, 2, . . .} be set of
symbols. We write X1 = X and X0 = 1.

1. A polynomial f(X) with coefficients in R is a formal finite linear combination:

f(X) = a0 + a1X + a2X
2 + · · ·+ anX

n ∋ ai ∈ R ∀ i = 0, 1, . . . , n
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It is possible some ai = 0. If some the aiX
i is omitted. So,

f(X) =

{
a0 + a1X + a2X

2 + · · ·+ anX
n =

a0 + a1X + a2X
2 + · · ·+ anX

n + 0 ·Xn+1 + 0 ·Xn+2 + · · ·

A polynomial f(X) = a0 is called a constant polynomial (meaning coefficients
ai = 0 ∀i ̸= 0).

2. Let R[X] denote the set of all polynomials, with coefficients in R.

3. We define addition and multiplications on R[X]. Consider two polynomials{
f(X) = a0 + a1X + a2X

2 + · · ·+ anX
n

g(X) = b0 + n1X + b2X
2 + · · ·+ bnX

n

By including 0 · Xk we can assume f(X) and g(X) have same number of terms.
Define{

(f + g)(X) = f(X) = (a0 + b0) + (a1 + b1)X + (a2 + b2)X
2 + · · ·+ (an + bn)X

n

(fg)(X) = a0b0 + (a0b1 + a1b0)X + (a0b2 + a1b1 + a2b0)X
2 + · · ·+ anbnX

2n

Lemma B.3.2. The set R[X] is commutative ring, under the addition and multiplication
defined above. The zero of the ring is the 0 = 0 + 0 · X + · · · (the constant polynomial
0). The Multiplicative identity is 1 = 1 + 0 ·X + · · · (the constant polynomial 1) We say
R[X] is the polynomial ring, in one variable X.

Proof. Exercise!

Definition B.3.3. Let R be a commutative ring. Let X1, X2, . . . , Xn be symbols (vari-
ables). Inductively, define the polynomial ring in these variables

R [X1, X2, . . . , Xn] = R [X1, X2, . . . , Xn−1] [Xn]

Alternate way to define this is as follows:

1. For integers, r1 ≥ 0, r2 ≥ 0, . . . , rn ≥ 0, the following expression

Xr1
1 Xr2

2 · · ·Xrn
n

is called a monomial . Here if ri = 0 then X0
i := 1 is omitted. We consider X0

i = 1.
A polynomial f(X1, X2, . . . , Xn) is a sum

f(X1, X2, . . . , Xn) =
∑

ar1,r2,...,rnX
r1
1 Xr2

2 · · ·Xrn
n (B.2)

where
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(a) ar1,r2,...,rn ∈ R

(b) Only finitely many ar1,r2,...,rn ̸= 0. So, the above sum is a finite sum. it is a
formal sum.

2. Given two polynomials{
f(X1, X2, . . . , Xn) =

∑
ar1,r2,...,rnX

r1
1 Xr2

2 · · ·Xrn
n

g(X1, X2, . . . , Xn) =
∑

br1,r2,...,rnX
r1
1 Xr2

2 · · ·Xrn
n

Define sum

(f + g)(X1, X2, . . . , Xn) =
∑

(ar1,r2,...,rn + br1,r2,...,rn)X
r1
1 Xr2

2 · · ·Xrn
n

Define product

(fg)(X1, X2, . . . , Xn) =
∑

r1≥0,...,rn≥0

( ∑
s1+t1=r1,...,sn+tn=rn

as1,s2,...,snbt1,t2,...,tn

)
Xr1

1 Xr2
2 · · ·Xrn

n

3. With this sum and product R [X1, X2, . . . , Xn] is commutative ring.

(a) A polynomial f as in (B.2) is called constant polynomial , if

ar1,r2,...,rn = 0 unless r1 = r2 = · · · = rn = 0

(b) The constant polynomial f = 0 is the zero of addition.

(c) The constant polynomial f = 1 is the multiplicative identity.

(d) A polynomial f as in (B.2), is an unit (invertible) if and only if (1) f = a is a
constant polynomial and a is unit in R. (Needs a proof.)

Remark B.3.4. Some remarks:

1. Most basic case of such polynomial rings, is when R = F is a field, and we consider
the polynomial ring

F [X1, X2, . . . , Xn]

2. Main usefulness of such polynomials f(X1, X2, . . . , Xn) is that, for x1, x2, . . . , xn ∈ R,
we can substitute

X1 = x1, · · · , Xn = xn and get a value f(x1, x2, . . . , xn) ∈ R.
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3. Then, given f ∈ R [X1, X2, . . . , Xn] you can look at the zero set

Z(f) = {(x1, x2, . . . , xn) ∈ Rn : f(x1, x2, . . . , xn) = 0}

We can do the same with more than one polynomials. Let f1, f2, . . . , fk ∈ R [X1, X2, . . . , Xn].
Then look at the common zero set

Z(f1, f2, . . . , fk) =

(x1, x2, . . . , xn) ∈ Rn :

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

· · ·
fk(x1, x2, . . . , xn) = 0


These are called Algebraic sets or spaces.

B.4 Division Algorithm and Euclidean rings

We start with two lemmas that are referred to as Division Algorithms.

Lemma B.4.1 (Euclid’s Algorithms). Fix an integer n ≥ 2. Given a integer m ∈ Z, we
can write

m = nq + r where

{
q ∈ Z unique integer

r ∈ Z, 0 ≤ r ≤ n− 1 unique integer

Proof. Do we need one? It follows from, so called, Well Ordering Principle.

Lemma B.4.2 (Division Algorithms of polynomials). Let F be a field and F[X] be the
polynomial ring, in one variable X. Let f(X) ∈ F[X] be a polynomial, such that f(X) ̸= 0.
Given a polynomial g(X) ∈ Z, there are two unique polynomials q(X), r(X) ∈ F[X], such
that

g(X) = f(X)q(X) + r(X) such that r(X) = 0 or deg(r(X)) < deg(f(X))

Proof. Try it! Use degree!

These lead to the following definition.

Definition B.4.3 (Euclidean Ring). Let R be ring. Assume R has no zero divisors

(Meaning ∀a, b ∈ R, ab = 0 =⇒ a = 0 or b = 0)

Write R̂ = {x ∈ R : x ̸= 0}, the set of non zero elements in R.
We say R is a Euclidean Ring if there is a function

d : R̂ −→ {0, 1, 2, . . .}

such that
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1. d(1) = 0.

2. ∀a, b ∈ R̂ d(a) ≤ d(ab)

3. Let a ∈ R̂. Then, for any b ∈ R̂ there are q, r ∈ R such that

b = qa+ r ∋ r = 0 or d(r) < d(a)

The function d will be referred to as the division algorithm.

Exercise B.4.4. Let R be an Euclidean ring, with the division algorithm d. Prove that
an element a ∈ R, with a ̸= 0 is a unit in R if and only if d(a) = 0.

Proof. Suppose d(a) = 0. If we divide 1 by a, then

1 = qa+ r r = 0 or d(r) < d(q) = 0

So, r = 0 and 1 = qa. So, a is a unit.

Conversely, assume a is unit. Then 1 = aa−1. So, d(a) ≤ d(1) = 0. So, d(a) = 0.

Example B.4.5. For integers n ∈ Z, with n ̸= 0 define d(n) = |n|, the absolute value.
Then Z is an Euclidean ring.

Example B.4.6. Let F be a field. For x ∈ F, with x ̸= 0 define d(x) = 0. Then F is an
Euclidean ring.

Example B.4.7. Let F be a field and R = F[X] be the polynomial ring. For f(X) ∈ F[X],
with f(X) ̸= 0 define d(f) = deg(f), the degree. Then F[X] is an Euclidean ring.
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