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Appendix A

Advanced Linear Algebra

A.1 Groups

Definition A.1.1. A nonempty set G with a binary operation
0:GxG— G sending (x,y)+— xzoy (or simply xy)

is called a group, if the following conditions are satisfied:

1. (Associativity:) Vz,y,z € G we have (zy)z = z(yz)
2. (Identity:) There is an element ¢ € G such that ez = ze =z Vo € G.

3. (Inverse:) Given x € G there is an element y € G such that xy = yzr =e.

Further, a group G is called a commutative group, if
Ty = yx Ve,y e G

A commutative group is also called an Abelian group (after the name of Niels Henrik
Abel). Notations: The notation xy is called the multiplicative notation. Additive nota-
tion x + vy s also used, more often in the case of commutative groups. Other notations are

also used, depending on the context.

In the multiplicative notation, it is more customary to denote identity by e = 1. In the
additive notation, it is more customary to denote identity by ¢ = 0 (zero). However, all

these depend on the context, textbook and the instructors.
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4 APPENDIX A. ADVANCED LINEAR ALGEBRA

Example A.1.2. Let Z be the set of integers. Then Z is a group under addition +.

Example A.1.3. Let n > 1 be an integers. Let GL, (R) be the set of all invertible

matrices A of order n. Then we GL,, (R) is a group under multiplication.

Example A.1.4. Let V be a vector space and GL(V') be the set of all isomorphisms
0 :V — V. Then GL(V) is a group under composition.

Example A.1.5. Let X C R" be a subset of R”. Let C'(X) be the set of all real valued
continuous functions f : X — R. For f, g € C(X) define f + g € C(X), as follows

(f+9)(z)=f(x) +gx) VreX

Then C(X) is a commutative group under this addition.

Example A.1.6. Let n > 1 be an integers. Let Z, = {0,1,2,...,n—1}. For z,y € Z,
define addition
r+y ifr+y<n-—1
T+y= .
r+y—mn ifx+y>n

Then Z, is a commutative group under this addition. This addition is called "residue
modulo n addition". (Ideally, we should use two different notations for + on two sides of

the above equation.)

Exercise A.1.7. Let GG be a group. Prove that the identity ¢ in the definition is unique.

In other words, if ¢,e € GG are such that

Then e¢=ce.

ex =x¢ Veed
ex =xe Vr el

Exercise A.1.8. Let GG be a group. Let x € G. Then x inverse of x is unique. In other
words, if v, 42 € G such that

=Y = ¢
h s Then Y = Y.
Yo = XYz = ¢

In multiplicative notation, this unique inverse y is denoted by z 1.

In Additive notation, this unique inverse y is denoted by —zx.
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A.2 Fields

In the context of Linear algebra, we are more interested in fields. The set of real numbers
R and the set of complex numbers C, are the model of a field.

Definition A.2.1. Let F be a nonempty set, with two binary operations, to be called

addition and multiplication:

+:FxF—F (z,y)—ax+y
FxF—F (x,y)— 2y

For z,y € F the addition will be denoted by = + y and multiplication will be denoted by
xy or x-y. We say that F is a field, if the addition and multiplication satisfy the following

properties:

1. (F,+) is a commutative group. (Zero 0 will denote the additive identiy. For v € F,

—x will denote the additive inverse.)

2. Let F* = {x € F:2 #0}. Then (F*,-) a commutative group. The multiplicative
identity is denoted by 1 € F*. For any x € [F, with x # 0, the multiplicative inverse

is denoted by z 7! of 1.
3. (Distributive:) Further,
Vr,y,z € F x(y+z) =axy+zz

More verbosely, without using the concept of Groups, most textbooks define a field
(equivalently), as follows. We write it as a lemma:

Lemma A.2.2. Let F be a set with two binary operations + and -:

+:FxF—TF (r,y)—z+y
2 FxF—F (2,y)— a2y

Then F, together with these two operations, is a field if and only if, the following properties

are satisfied:

1. The additive properties:

(a) (Associativity of +:) Vz,y, 2z € F we have

(z+y)+z=a+(y+2)
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(b) (Additive Identity:) There is an element 0 € [F such that
O+rz=2+0=zxVoxelF
(c) (Additive Inverse:) Given z € F there is an element y € I such that
r+y=y+x=0
(d) (Additive Commutativity:)
Ve,y € F r+y=y+=zx
(For x € F, —x will denote the additive inverse.)
2. Multiplicative properties:
(a) (Associativity of -:) Vz,y,z € F we have
(zy)z = x(yz)
(b) (Additive Identity:) There is an element 1 € [F such that
l-x=x-1=xVoreF
(¢) (Multiplicative Inverse:) Given z € F, with x # 0 there is an element y € F

such that

This inverse y is denoted by 2! or

(d) (Multiplicative Commutativity:

3. (Distributive:) Further,
Vr,y,z € F x(y+z) =axy+zz
Example A.2.3. Let

([ R = set of all real numbers
C = set of all complex numbers
¢ Q= set of all rational numbers

I = set of all irrational numbers

Z = set of all integers

\

Then R, C, Q are fields. But Z is not a field; nor is I.
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Example A.2.4. Let p > 2 be a prime number and
Z,=1{0,1,2,...,p—1}.
For z,y € Z,, by division algorithm, we have
r+y=png+r, 0<r, <p—1n, integer
{ Y =pm +r,m 01, <p—1n, integer

Define a (new) addition and multiplication on Z, as follows:
Tty =71, TY ‘=T

(Ideally, we should use a different notation for + and xy. These are called addition and
multiplication modulo p.)

Then, Z, is a field under this addition and multiplication.

A.2.1 Vector spaces over fields [F

Recall that the set of real numbers R, is a field (under addition + and multiplication -).
In the elementary linear algebra courses, usually the Vectors spaces over the field of real
numbers R are taught. We can define vectors spaces over any field F. So, we can talk
about vector spaces over C, over Q, over Z, and any other field. For completeness, I define
vector spaces over any given field F. (The definition will be same as the vectors spaces over

R, by replacing R by F. )

Definition A.2.5. Let F be a field. Suppose V is a non empty, with a two operations

(vector addition and scalar multiplication):

{+:VXV—>V (u,v) = u+v wvector addition (A1)

2 FxV—V (¢v)—cv scalar multiplication

(So, we are dealing with two additions, one addition + on F, one vector addition + on
V. Further, there is a multiplication/product on F and a scalar multiplication on V. Any

element ¢ € F will be called a scalar.)

We say V is a vector space over F, if the following holds:

1. The equation (A.1) can be alternately restated as: V is closed under addition and

scalar multiplication.

2. Additive properties of V:
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(a) (Associativity:) For u,v,w € V, we have
(u+v)+w=u+(v+w)
(b) (Additive identity:) There is an element 0 € V' such that

YueV O+u=u

(c¢) (Additive Inverse:) Given any element u € V' there is an element y € V' such
that
u+y=0

(d) (Commutativity:)

VuveV u+v=v-+u

3. Scalar multiplication properties:

c(lu+v)=cu+cv VeeF;Vu,veV Distributivity
(c+du=cu+du Ve, d€F;VueV Distributivity
(cd)u = ¢ (du) Ve,d € F;Vu e V' Associativity

l-u=u YueV scalar Identity

Exercise A.2.6. Let F be a field and V' be a nonempty set with a addition + and a scaler

multiplication, as in (A.1). The V' is a vector space over F if and only if

1. V' is a commutative group under vector addition +.

2. Scalar multiplication properties:

clu+v)=cu+cv VeceF;YVu,veVlV Distributivity
(c+du=cu+du Ve, deF;VueV Distributivity
(ed)u = ¢ (du) Ve,d € F;Vu € Vo Associativity

l-u=nu YueV scalar Identity

Remark A.2.7. We extend most of what I do in undergraduate linear algebra course, as

follows for arbitrary fields:

1. Barring the chapter on Inner product spaces, almost everything I said about vector
spaces over R, works for vector spaces over any field F. This includes vector spaces

over C.
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2. Almost anything I said about Matrices, with real entries, works for matrices with
entries in a field F. Let M,,x, () denote the set of all matrices with entries in F.
For square matrices A € M,,«,, (F), we define determinant |A| in the same way. We

can define adjoint Adj(A) in the same way. It follows, in the same way
A(Adj(A)) = (Adj(A)) A = |A[L,

If |A| # 0 then the inverse
1

A—l
Al

(Adj(A))

3. The idea of inner product does not extend, because R has a order relationship a < b,
while that is absent in other fields F. We can talk about length of vector in a

meaningful way, for vectors over R.

While the idea of vector spaces works for vector spaces over C, the definitions need
to be fine tuned a little.

Example A.2.8. Here are some examples.

1. Let [F be a field. Then F" is a vector space over [F.

2. F be a field. Let X be an indeterminate (symbol). For integers n > 1 let X™ is also
a symbol, Let

FIX] = {ap+ e X + asX?+ -+ a, X" : a; € F,n > 0}

(We say F[X] is the set of all polynomials over F.)

Then F[X] is a vector space over F.
3. Here are some more:

(a) C is vector space over Q.
(b) C is vector space over R.

(¢) R is vector space over Q.

A.2.2 Division Algebra and Quaternions

In a field F product is commutative xy = yx. By relaxing the definition of field, by
removing the condition on commutativity zy = yx, we obtain the definition of Devision
Algebra, as follows.



10 APPENDIX A. ADVANCED LINEAR ALGEBRA

Definition A.2.9. Let D be a nonempty set, with two binary operations, to be called

addition and multiplication:

+:DxD—D (z,y)—z+y
:DxD—D (x,y)— ay

For x,y € D the addition will be denoted by x+y and multiplication will be denoted by zy
or x -y. We say that D is a Division Algebra, if the addition and multiplication satisfy

the following properties:

1. (D, +) is a commutative group. (Zero 0 will denote the additive identiy. For x € F,

—x will denote the additive inverse.)

2. Let D* = {x € D: x # 0}. Then (D*,-) a group (not necessarily commutative). The
multiplicative identity is denoted by 1 € D*. For any x € D, with x # 0, the

multiplicative inverse is denoted by ! of %

3. (Distributive:) Further,

Vi.y.z € F {x(y+z):xy~l—a:z

(x+y)z=z2+yz

The most important example of Division algebra is the Quaternion Algebra, defined
as follows.

Definition A.2.10. Let Q = R*. Write

:[L — (170707 0)

, = (0,1,0,0

Z' ( y Ly U,y ) They form a basis Of Q
J = (0707170)

k - (07070?1)

Given x = (z1, 2, T3, 24) € Q, we can write
X =211 + 291 + 237 + x4k Likewise, let 'y =111+ yot + y3J + yak
Usually, 1 is omitted and we write 1 = 1 and 1, j, k are treated as symbols. So, one writes
X =21 + Tt + 23] + x4k Likewise 'y =y1 + yat + ysj + yak

Define
X+y= (1 +y)+ (2o +v2)i + (w3 +y3)j + (4 +ya)k
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This addition is same as sum is Q = R*.

A product is defined by the following multiplication table:

So, for x,y € Q, as above

(T1y1 — Toy2 — T3Y3 — T4ys)+
(T1Y2 + Toy1 + T3ys — T4y3)i+
(1Y + T3Y1 — ToYs + Tay2)j+
(T1Ys + 2491 + Toys — 2310k

Note, the product is not commutative ij # ji. Then Q is a Division Algebra.

-1 _ Ty — Tl — T3] — T4k
- 2 2 2 2
]+ x5 +x3+ 7]

X' = (21 + 290 + 237 + 24K)

Thuis Q is known as the Quaternion Algebra.
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Appendix B

Rings and Modules

Rings are extension of the idea of Division algebras or fields. The modules are similar to
vectors spaces over rings.

B.1 Rings

Definition B.1.1. Let R be a nonempty set, with two binary operations, to be called

addition and multiplication:

+:RxR— R (z,y) —»x+y
:RxR— R (x,y)— 2y

For z,y € R the addition will be denoted by = +y and multiplication will be denoted by zy
or x -y. We say that R is a Ring, if the addition and multiplication satisfy the following

properties:

1. (R,+) is a commutative group.
(Zero 0 will denote the additive identiy. For x € R, —x will denote the additive

inverse.)
2. (Multiplicative Associativity:)

Vr,y,z € R (zy)z = z(yz)
3. (Distributive:)

Ve.y.s € R {a:(y+z):$y+xz

(x+y)z=z2+yz

13
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4. There is a multiplicative identity, denoted by 1 € R, such that
0#1 VreR r-l=1-x=x

Definition B.1.2. Suppose R is a ring, and x € R. We say, x has an inverse, if there in

an element y € R such that xy = yxr = 1.

Exercise B.1.3. Suppose R is a ring.

1. Let € R. If x has an inverse, then the inverse is unique. The inverse is denoted by

1‘71 or l
T

2. Let xr€e Rthen 0-x=0and z-0=0.
3. Prove 0 does not have a multiplicative inverse.

Example B.1.4. Every Division Algebra is a ring.

As in the definition of Fields, more verbosely, without using the concept of Groups,
most textbooks define a ring (equivalently), as follows. We write it as a lemma:

Lemma B.1.5. Let R be a non empty set with two binary operations + and -:

+:RxR—R (r,y)—z+y
tRXR—R (z,y)— a2y

Then R, together with these two operations, is a field if and only if, the following properties

are satisfied:
1. The additive properties:
(a) (Associativity of +:) Vz,y,z € R we have
(+y)+z=z+(y+2)
(b) (Additive Identity:) There is an element 0 € R such that
O+z=2+0=aVzekR
(c) (Additive Inverse:) Given x € R there is an element y € R such that

r+y=y+x=0
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(d) (Additive Commutativity:)
Vre,y € R r+y=y+zx

(For x € R, —x will denote the additive inverse.)
2. Multiplicative properties:

(a) (Associativity of -:) Vz,y,z € R we have
(ry)z = 2(y2)
(b) (Additive Identity:) There is an element 1 € R such that
0#1 and l-z=x-1=zxVreR

3. (Distributive:) Further,

Vz,y,2 € R {x(y“):x“m

(x+y)z =22+ yz

Remark B.1.6. Suppose R is a ring. Note that not all non zero x € R has an inverse.
But if 2 has an inverse, then it is unique and is denoted by x! or % Ans invertible elements

x € R, are called units of R.

Remark B.1.7. Let R be aring. Let U(R) = {x € R : z is invertible.}. Prove U(R) is a

group, under multiplication.
Example B.1.8. Let n > 1 be an integer. Let R = M,,»,,(R). Then R is a ring.

Definition B.1.9. Let R be a ring. We say R is a commutative ring is the multiplication

is commutative. This means
Ty = yzx Vz,y € R.
Note, R = M, (R) is not commutative.

Example B.1.10. The set of integers Z is a commutative ring, under usual addition +
and multiplication. Note U(Z) = {—1,1}.

I believe, motivation to define rings, came from the examples, similar to the following.
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Example B.1.11. Let [0, 1] denote the unit interval. Let R = C([0,1]) denote the set of
continuous function f : [0, 1] — R. Notionally,

R={f:[0,1] — R : f is continuous}

For f,g € R define addition and multiplication

{ (f+9)(t) = f(t) +g(t) telo,]
(f9)(t) = F(t)g(t) telo1]

Then R is commutative ring. Resolve the following questions:
1. What is the additive zero of R.
2. What is the multiplicative identity of R.

3. Given f € R, give a conditions when f has multiplicative inverse. Further, describe,

f~1, when exists.
4. Given as subset X C R™, we can define R = C(X), as above. Convince yourself!

Exercise B.1.12. Let IF be a field and F[.X] be the set of all polynomials, with coefficients
in F (see example A.2.8). Addition was defined in (A.2.8). Define multiplication on F[X]
. Prove F[X] is a ring. Resolve the following:

1. What is the additive zero of F[.X].
2. What is the multiplicative identity of F[X].

3. Describe the units U(F[X]) of F[X].

B.2 Modules

A module M over a ring R, extends the idea vector spaces over a field. In order to avoid
defining right-modules and left-modules, I will assume R is a commutative ring, in the
section. We imitate (literal copy and paste) the definition of vector spaces.

Definition B.2.1. Suppose R is a commutative ring. Suppose M is a non empty set, with

two operations (vector addition and scalar multiplication):

{ +:MxM-—M (uv)—u+v wvector addition (B.1)

tRXM—M (c,v)—cv scalar multiplication
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(So, we are dealing with two additions, one addition + on R, one vector addition + on M.

Further, there is a multiplication/product on R and a scalar multiplication on M .)

We say M is a module over R, if the following holds:

1. The equation (B.1) can be alternately restated as: M is closed under addition and

scalar multiplication.
2. Additive properties of M:
(a) (Associativity:) For u,v,w € M, we have
(u+v)+w=u+(v+w)
(b) (Additive identity:) There is an element 0 € M such that

Yue M O+u=u

(c) (Additive Inverse:) Given any element u € M there is an element y € M
such that
u+y=0

(This y is unique and is denoted by —u.)
(d) (Commutativity:)

VuveM ut+v=v-+u

3. Scalar multiplication properties:

c(lu+v)=cu+cv Vee R;Vu,ve M Distributivity
(c+du=cu+du Ve, de R;Vue M Distributivity
(cd)u = ¢ (du) Ve,d € R;Yu € M Associativity

l-u=u Yue M scalar Identity

A module M over R is also called an R-module.

Exercise B.2.2. Let R be a commutative ring and M be a nonempty set with a addition

+ and a scaler multiplication, as in (B.1). Then M is a module over R if and only if

1. M is a commutative group under vector addition —+.



18 APPENDIX B. RINGS AND MODULES

2. Scalar multiplication properties:

c(lu+v)=cu+cv Vee R;YVu,ve M Distributivity
(c+du=cu+du Ve, de R;Vue M Distributivity
(cd)u = ¢ (du) Ve,d € R;Yu € M Associativity

l-u=u Yue M scalar Identity

Remark B.2.3. I have tacitly continued with the terminologies of vector spaces. However,

terminologies change a little, which you need to worry at this point.

The elements ¢ € R are thought of as functions; not so much as a scalars.

Remark B.2.4. Let R be a commutative ring. Since there are non-zero non-units x # 0,
in R, unlike in a field, a lot of vector space like properties fail for modules M over R. (This

gives us a lot of opportunity for research.) We list a few:

1. Let M be an R-module. Then M need not have a basis.
2. If M has a basis, we say that M is a Free R-module.

3. (Example:) For any commutative ring R, easiest example of an R-module is M =
R™. Actually, M = R" is a free module.

4. (Example:) The set of real numbers R is a Z-module.

The set of complex numbers C is a Z-module.

B.3 Polynomial rings

Unless we know more rings, we would not know better examples of modules. So, we define
polynomial rings over commutative rings.

Definition B.3.1. Suppose R is a commutative ring. Let {X":n =1,2,...} be set of
symbols. We write X! = X and X° = 1.

1. A polynomial f(X) with coefficients in R is a formal finite linear combination:

fX)=a+a X +aX?+--+a, X" >  @€RVYi=01,....n



B.3. POLYNOMIAL RINGS 19

It is possible some a; = 0. If some the @, X* is omitted. So,

F(X) = ap+ a1 X +aX?+ - +a, X" =
aU+a1X+Cl2X2—|—~"—|—aan—|—0-X”+l_|_0.X7l+2+,”

A polynomial f(X) = qg is called a constant polynomial (meaning coefficients
a; =0Vi#£0).

2. Let R[X] denote the set of all polynomials, with coefficients in R.

3. We define addition and multiplications on R[X]. Consider two polynomials

f(X):a0‘|—CL1X—|—a2X2_|_...+aan
Q(X):bo+n1X+b2X2_|_...+ann

By including 0 - X* we can assume f(X) and g(X) have same number of terms.

Define

(f +9)(X) = f(X) = (ao + bo) + (a1 + b1) X + (a2 + b2) X* + - -+ + (an + b)) X"
(fg) (X) = aobo + (a0b1 + albo)X + (aobg + a161 + ngo)X2 + -+ ananQ”

Lemma B.3.2. The set R[X] is commutative ring, under the addition and multiplication
defined above. The zero of the ring is the 0 = 040+ X + --- (the constant polynomial
0). The Multiplicative identity is 1 =140 X + --- (the constant polynomial 1) We say

R[X] is the polynomial ring, in one variable X .

Proof. Exercise! ]

Definition B.3.3. Let R be a commutative ring. Let X, Xy, ..., X,, be symbols (vari-

ables). Inductively, define the polynomial ring in these variables
R[X1, X, ..., X, = R[ X1, Xo, ..., Xoa] [X4]

Alternate way to define this is as follows:

1. For integers, 1 > 0,79 > 0,...,7, > 0, the following expression
XIlX§2 .. _X;':n

is called a monomial . Here if r; = 0 then X? := 1 is omitted. We consider X? = 1.

A polynomial f(Xy, Xs,...,X,) is a sum
FX, Xo o X)) =Dy XX X (B.2)

where
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(a) Ay ro,rn € R

(b) Only finitely many a,, ,, ., # 0. So, the above sum is a finite sum. it is a

formal sum.
2. Given two polynomials

FX1, Xo oo, X0) =D Gy X1 X2 X0
9( X1, Xo, ., X)) =D by X1 XS - X

Define sum
(f+ (X1, X, ..., Xn) = Z (@ry gy Orygra,ra) X1 X357 X0

Define product

(fg)(X17X27'--7Xn> = Z ( Z afsl,sz ..... Snbtl,tz ..... tn) X{,1X;’2..'X:Ln
s1+ti1=r1

7120, 20 \s14+61="1,..., Snttn=rn
3. With this sum and product R[X7, X5, ..., X,,] is commutative ring.
(a) A polynomial f as in (B.2) is called constant polynomial , if
Qryrg,on =0 unless ry=ryg=---=1r, =0
(b) The constant polynomial f = 0 is the zero of addition.

(c¢) The constant polynomial f = 1 is the multiplicative identity.

(d) A polynomial f asin (B.2), is an unit (invertible) if and only if (1) f = a is a

constant polynomial and a is unit in R. (Needs a proof.)

Remark B.3.4. Some remarks:

1. Most basic case of such polynomial rings, is when R = F is a field, and we consider
the polynomial ring
F Xy, Xo, ..., X,)]

2. Main usefulness of such polynomials f(X;, Xs, ..., X,) is that, for x1, zo,..., 2, € R,

we can substitute

Xy =x1, -, X, =z, and get a value f(x1,x9,...,2,) € R.
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3. Then, given f € R[Xy, Xs,..., X,] you can look at the zero set

Z(f) ={(z1,29,...,2,) € R": f(x1,29,...,2,) =0}

We can do the same with more than one polynomials. Let fi, fo, ..., fr € R[X1, Xo, ..., X,

Then look at the common zero set

fl(l’l,l‘g, ce. 7'1:71) =

Z(f1, for - fr) = L (21,20, ..., 1) € R™: Ja(w1, 20, 2) =

These are called Algebraic sets or spaces.

B.4 Division Algorithm and Euclidean rings

We start with two lemmas that are referred to as Division Algorithms.

Lemma B.4.1 (Euclid’s Algorithms). Fix an integer n > 2. Given a integer m € Z, we

can write
qEZ unique integer
m=nq-+r where , .
re, 0<r<n-—1 unique integer
Proof. Do we need one? It follows from, so called, Well Ordering Principle. [ |

Lemma B.4.2 (Division Algorithms of polynomials). Let F be a field and F[X] be the
polynomial ring, in one variable X. Let f(X) € F[X] be a polynomial, such that f(X) # 0.
Given a polynomial g(X) € Z, there are two unique polynomials ¢(X),r(X) € F[X], such
that

9(X) = f(X)q(X) +r(X) such that r(X) =0 or deg(r(X)) < deg(f(X))
Proof. Try it! Use degree! |
These lead to the following definition.
Definition B.4.3 (Euclidean Ring). Let R be ring. Assume R has no zero divisors
(Meaning Va,be R, ab=0=a=0o0r b=0)

Write R = {x € R : z # 0}, the set of non zero elements in R.

We say R is a Euclidean Ring if there is a function
d:R—1{0,1,2,.. .}

such that
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1. d(1) =0.
2. Va,be R d(a) < d(ab)
3. Let a € R. Then, for any b € R there are q,7 € R such that

b=qa+r > r=0 or d(r)<d(a)

The function d will be referred to as the division algorithm.

Exercise B.4.4. Let R be an Euclidean ring, with the division algorithm d. Prove that
an element a € R, with a # 0 is a unit in R if and only if d(a) = 0.

Proof. Suppose d(a) = 0. If we divide 1 by a, then
l=qga+r r=0 or d(r)<d(q) =0

So, r =0 and 1 = qa. So, a is a unit.

Conversely, assume a is unit. Then 1 = aa™'. So, d(a) < d(1) = 0. So, d(a) = 0.

Example B.4.5. For integers n € Z, with n # 0 define d(n) = |n|, the absolute value.

Then Z is an Euclidean ring.

Example B.4.6. Let F be a field. For z € F, with « # 0 define d(z) = 0. Then F is an

Euclidean ring.

Example B.4.7. Let F be a field and R = F[X]| be the polynomial ring. For f(X) € F[X],
with f(X) # 0 define d(f) = deg(f), the degree. Then F[X] is an Euclidean ring.
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