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System of n equations and n unknown

Systems of Linear Equations

Consider a system of
m linear equations, in n (unknown) varibales:

a11x1+ a12x2+ a13x3+ · · ·+ a1nxn = b1

a21x1+ a22x2+ a13x3+ · · ·+ a2nxn = b2

a31x1+ a32x2+ a33x3+ · · ·+ a3nxn = b3

· · · · · · · · · · · · · · · · · ·
am1x1+ am2x2+ am3x3+ · · ·+ amnxn = bm

(1)

where aij , bj are real or complex numbers.
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Continued

▶ Write

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

a31 a32 · · · a3n

· · · · · · · · · · · ·
am1 am2 · · · amn

 b =


b1

b2

· · ·
bm

 x =


x1

x2

· · ·
xn


Then A is called the coefficient matrix of the system (1).
We also write A = (aij).

▶ In matrix form, the system (1) is written as

Ax = b (2)
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System of n equations and n unknown

The Homogeneous Equation

▶ If b = 0, then the system (2) would be called a
homogeneous system. So,

Ax = 0 (3)

is a homogeneous system of linear equation.
▶ Then x = 0 is a solution of the homogeneous system (3),

to be called the trivial solution.
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System of n equations and n unknown

A system and the homogeneous system

▶ Fix a (particular) solution x = x(0)

of the system (2): Ax = b.
▶ Then any solution of (2): Ax = b is of the form

x = x(0) + ξ wehre Aξ = 0. (4)

In other words ξ is a solution of the corresponding
homogeneous system Ax = 0.
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Augmented Matrix

▶ Corresponding to a system (1), define the
augmented matrix

A|b =


a11 a12 · · · a1n b1

a21 a22 · · · a2n b2

a31 a32 · · · a3n b3

· · · · · · · · · · · · · · ·
am1 am2 · · · amn bm

 (5)

▶ In deed, the system (1) and the augmented matrix (5)
has the same information/data. The Up-shot: the row
operations performed on system (1), can be performed on
the augmented matrix (5), in stead.
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System of n equations and n unknown

Solving the system (1)

▶ There are three possibilities:
▶ The system (1), have no solution.
▶ The system (1), have a unique solution.

For this possibility, we need at least n equations.
▶ The system (1), have infinitely many solution.

▶ To solve system (1), we can use TI-84 (ref, rref).
Cosult any TI-84 site for instructions.
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System of n equations and n unknown

n = m: System of n equations and n unknown

In this course, we focus on the case when m = n.
That means, the number of equations is same as
the number of unknowns x1, . . . , xn. Now on, assume n = m

▶ When n = m, then the coefficient matrix A of (1)
is a square matrix of size n × n.

▶ Recall, a square matrix A is invertible ⇐⇒ |A| ≠ 0.
▶ If |A| ≠ 0, then the unique solution of system (2)

Ax = b is x = A−1b (6)
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Linear Indpendence

▶ A set x1, x2, . . . , xk of vectors (in Rn) is said to be
linearly dependent over R if there are scalars c1, . . . , ck in
R, not all zero such that c1x1 + c2x2 + · · ·+ ckxk = 0.

▶ Likewise, a set x1, x2, . . . , xk of vectors (in Cn) is said to
be linearly dependent over C if there are scalars c1, . . . , ck
in C, not all zero such that c1x1 + c2x2 + · · ·+ ckxk = 0.

▶ A set x1, x2, . . . , xk of vectors is said to be linearly
independent over R or C, if they are not linearly
dependent. That means, if

c1x1+ c2x2+ · · ·+ ckxk = 0 =⇒ c1 = c2 = · · · = ck = 0.
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Continued

▶ Given a set x1, x2, . . . , xk (in Rn or Cn) of vectors,
we can form an n × k matrix X :=

(
x1 x2 · · · xk

)
.

▶ Then x1, x2, . . . , xk is linearly independent, if
Xc = 0 =⇒ c = 0. In other words, Xc = 0
has no non-trivial solution.

▶ n such vectors, x1, x2, . . . , xn (in Rn or Cn)

are linearly independent ⇐⇒ |X| ≠ 0 ⇐⇒ X is invertible.
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Eigenvalues and Eigenvectors

Suppose A is a square matrix of size n × n.
▶ A scalar λ ∈ C is said to be an Eigenvalue of A,

if |A − λI| = 0.
▶ The following four conditions are equivalent:

1. λ ∈ C is an Eigenvalue of A
2. |A − λI| = 0
3. The system (A − λI)x = 0 has nontrivial solutions.
4. There are non-zero vectors x such that Ax = λx.

▶ Accordingly, a vector x ̸= 0 is called an
eigenvector, for an eigenvalue λ of A, if Ax = λx.
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Continued

▶ Eigenvalues are also called characteristic roots of A. (The
german word "eigen" means "particular" or "peculier".)

▶ The equation |A − λI| = 0, is a polynomial equation in λ,
of degree n, to be called the characteristic equation of A.

▶ Counting multiplicity of roots, the characteristic equation
|A − λI| = 0, has n complex roots (including real roots).
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Computing Eigen Values and vectors

Matlab can be used to compute eigenvalues and eigenvectors.
Consult instructions in my site. The commands eig(A),
[V,D]=eig(A) will be useful. However, Matlab does not work
too well in this case. Eventually, we will use TI-84 to handle
all these. Although, TI-84 does not have any direct command
to do all these.
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▶ For our purpose, analytic methods work best, while
Matlab or TI-84 would work sometimes.
When we have to deal with complex eigenvalues,
Analytic methods are the only choice.

▶ Main thrust of this section is to compute eigenvalues and
eigenvectors.
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Example 1
Example 2
Example 3

Example 1

Find the eigenvalues and the corresponding eigenvector of

A =

(
1 −2
4 −1

)
Use Matlab eig [V ,D]

▶ Analytically: The characteristic equation:

|A − λI| =
∣∣∣∣ 1 − λ −2

4 −1 − λ

∣∣∣∣ = 0

(1 − λ)(−1 − λ) + 8 = 0 ⇐⇒ λ2 + 7 = 0

Eigenvalues are λ = ±
√

7i
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Example 1
Example 2
Example 3

Eigenvectors for λ =
√

7i

To compute an eigenvector λ =
√

7i , we solve (A − λI )x = 0,
which is  1 −

√
7i −2

4 −1 −
√

7i

(
x1

x2

)
=

(
0
0

)
{

(1 −
√

7i)x1 − 2x2 = 0
4x1 − (1 +

√
7i)x2 = 0

=⇒
{

(1 −
√

7i)x1 − 2x2 = 0
0 = 0
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Continued

So, x2 =
1−

√
7i

2 x1

Taking x1 = 1, an eigenvector for λ =
√

7i , is

x =

(
x1

x2

)
=

(
1

1−
√

7i
2

)
(7)
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Example 2
Example 3

Eigenvectors for λ = −
√

7i

▶ An eigenvectors for λ = −
√

7i can be computed, as in
the case of its conjugate λ =

√
7i .

▶ Alternately, An eigenvectors for λ = −
√

7i is the
conjugate of (7):

x =

(
x1

x2

)
=

(
1

1+
√

7i
2

)
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Example 2

Find the eigenvalues and the corresponding eigenvector of

A =

(
1 3
−1 5

)
. Use Matlab eig [V ,D]

▶ The characteristic equation:

|A − λI| =
∣∣∣∣ 1 − λ 3

−1 5 − λ

∣∣∣∣ = 0

(1 − λ)(5 − λ) + 3 = 0 ⇐⇒ λ2 − 6λ+ 8 = 0

Eigenvalues are λ = 2, 4
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Eigenvectors for λ = 2

For λ = 2, solve (A − λI )x = 0, which is(
1 − 2 3
−1 5 − 2

)(
x1

x2

)
=

(
0
0

)
(

−1 3
−1 3

)(
x1

x2

)
=

(
0
0

)
{

−x1 + 3x2 = 0
−x1 + 3x2 = 0 =⇒

{
x1 = 3x2

0 = 0
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Continued

Taking x2 = 1, an eigenvector for λ = 2, is

x =

(
x1

x2

)
=

(
3
1

)
(8)

▶ Since λ = 2 has multiplicity one, we expect only one
linearly independent eigenvector for λ = 2.
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Example 1
Example 2
Example 3

Eigenvectors for λ = 4

For λ = 4, solve (A − λI )x = 0, which is(
1 − 4 3
−1 5 − 4

)(
x1

x2

)
=

(
0
0

)
(

−3 3
−1 1

)(
x1

x2

)
=

(
0
0

)
{

−3x1 + 3x2 = 0
−x1 + x2 = 0 =⇒

{
0 = 0

−x1 + x2 = 0
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Continued

Taking x1 = 1, an eigenvector for λ = 4, is

x =

(
x1

x2

)
=

(
1
1

)
(9)

▶ Since λ = 2 or λ = 4 has multiplicity one, we expect only
one linearly independent eigenvector for, for each.
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Example 3

Let

A =

 −5 0 0
−1 7 0
−1 1 3

 .

(a) Find the characteristic equation of A, (b) Find all the
eigenvalues of A, (c) Corresponding to each eigenvalue,
compute an eigen vector.
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Solution

Solution: The characteristic polynomial is

det(λI−A) =

∣∣∣∣∣∣
λ+ 5 0 0

1 λ− 7 0
1 −1 λ− 3

∣∣∣∣∣∣ = (λ+5)(λ−7)(λ−3).

So, the characteristic equation is

(λ+ 5)(λ− 7)(λ− 3) = 0.

Therefore, the eigenvalues are λ = −5, 7, 3..
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Continued

To find an eigenvector corresponding to λ = −5, solve
(−5I − A)x = 0 or 0 0 0

1 −12 0
1 −1 −8

 x
y
z

 =

 0
0
0

 .

Solving, we get

x = t, y =
1
12

t z =
1
8
x − 1

8
y =

11
96

t
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Continued

So, taking t = 1, an eigen vector for λ = −5 is

x =

 1
1
12
11
96


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Example 3

Continued

To find an eigenvector corresponding to λ = 7, we have to
solve (7I − A)x = 0 or 12 0 0

1 0 0
1 −1 4

 x
y
z

 =

 0
0
0

 .

Solving, we get

x = 0 y = t z =
1
4
(y − x) =

1
4
t.
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Continued

With t = 1,

 0
1
1
4

 is an eigenvector of A, for eigenvalue

λ = 7.
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Continued
To find an eigenvector corresponding to λ = 3, wehave to
solve (3I − A)x = 0 or 8 0 0

1 −4 0
1 −1 0

 x
y
z

 =

 0
0
0

 .

So, x = 0 y =
1
4
x = 0 z = t.

With t = 1, an eigenvector, for eigenvalue λ = 3, is 0
0
1


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