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In this section,
we do a few applications of linear systems, as follows.

» Fitting polynomials,
» Network analysis,
» Kirchoff's Laws for electrical networks
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Invincibility of Linear Algebra

System of linear equations is much easier to handle than
nonlinear systems. (I do not mean for this class only, | mean
for expert mathematicians and scientists.) In fact, it is really
very difficult to handle nonlinear systems. That is why, there is
a wide range of applications of linear systems.
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Polynomial curve fitting
Examples

Number of points needed

Recall the facts:

» there is exactly one line y = ¢ + mx that passes through
two given points.

» there is exactly one parabola y = ax? + bx + ¢ that
passes through three given points.

» More generally, given n+ 1 points in the plane, there is
exactly one polynomial

p(x) = ap + arx + -+ a,_1x" P +a,x"  of degree n

so that the graph y = p(x) will pass through these points.
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Polynomial curve fitting
Examples

Method to fit polynomial

Suppose a collection of data is represented by n points:

(Xlayl)a (X27y2)7 R (Xna.yn)'

Assume the x—coordinates xi, x, . . ., X, are distinct.
We determine a UNIQUE polynomial

p(x) = ap+aixi+ax’+- - +a,_1x""' with deg(p) < n—1

so that the graph of y = p(x) passes through these points.
» Given n such points, to determine p(x) we need to find

the coefficients ag, a1, ..., a,_1.
» Since (x;, ;) passes through the graph of y = p(x), we
have yi = p(x;).
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Polynomial curve fitting
Examples

Continued

More explicitly,

do +aixq —|—32X12 + +an71X1 ="N
-1
a  tae +axg +-- 4a1xg T =y
-1
ag +ai1x3 —|—82X§ + ‘i‘anflx‘é7 =)3 (1)

a0 Faix, taxx? 4o Fa,ixl =y,

This is a linear system of n equations, with n unknowns
(variables) ag, a1, az, ..., an 1.
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Polynomial curve fitting

Examples

Continued

The augmented matrix of this linear system is:

2 n—1

1 x1 x5 - X %1
2 n—1

I e x5 - X Y2
2 n—1

1 x5 x5 - X3 ¥3

1 x, x2 - x"1 oy,

and the coefficients matrix is

2 n—1
1 x1 x5 - X X
2 n—
1 X x22 X X
o
1 x5 x5 - X3
2 n—1
1 x, x5 - X
This matrix is called Vandermonde-matrix in x;y. x: X
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Polynomial curve fitting
Examples

Continued

» Since xq, ..., X, are assumed to be distinct, it is known
that the linear system (1), has a unique solution.

» We can reduce the augmented matrix to row echelon
form and solve for ag, a1, ..., a,_1.
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Polynomial curve fitting
Examples

Example 1.3.1

Determine the polynomial function (of degree 2) that passes
through the points (2,4), (3, 6), (4, 10).

Solution: Let p(x) = a+ bx + cx?. Since these points pass
through the graph of y = p(x) = a + bx + cx?, we have

a +b2 +c2° =4 a 42b +4c =4
a +b3 +c3? =6 or a +3b +9¢ =6
a +bd +c4?> =10 a +4b +16c =10
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Polynomial curve fitting

Examples

Continued

The augmented matrix of this system is:

12 4 4
139 6
1 4 16 10

Now we reduce the matrix to the row-echelon form. To do this
subtract row-1 from row-2 and row-3:

1 2 4 4

015 2

0 2 12 6
Now, subtract 2 times row-2 from row-3:

12 4 4
0152
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Polynomial curve fitting
Examples

Continued

Divide the last row by 2:

2 I~
=N A

12
01
00
The matrix is in row-echelon form. The linear system

corresponding to this matrix is:

a +2b +4c =4
b +5¢c =2
C =1.

So ¢c=1, b=2-5=-3, a=4—-44+6=6
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Polynomial curve fitting
Examples

Continued

So
p(x) = a+ bx + cx* =6 — 3x + x°.

You can use Tl to graph it, and check that the graph passes
through the given three points.
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Polynomial curve fitting
Examples

Example 1.3.2

Here is some US census population data:

Year 1980 1990 2000
population y 227 249 281

Here population is given in millions.
» Fit a quadratic polynomial passing through these points.
» Use it to predict population in year 2010 and 2020.

Solution: Let t be the variable time and set t = 0 for the
year 1980. The table reduces to

t 0 10 20
y 227 249 281
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Polynomial curve fitting
Examples

Continued

Let p(t) = a+ bt + ct? be the polynomial that fits this data.

Since the data points pass through the graph of
y=p(t)=a+ bt+ ct?, we have

a +b0 +c0> =227
a +b10 +cl0?2 =249
a +b20 +c202 =281

= 227
+10b +100c =249
+20b +400c =281

L L
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Polynomial curve fitting
Examples

Continued

The augmented matrix is

10 O 227
1 10 100 249
1 20 400 281

Now use TI-84 (or you can hand reduce) to reduce the matrix
to Gauss-Jordan form:

1 0 0 227
010 17
0 01 .05

So, a=227,b=17,c=0.05
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Polynomial curve fitting
Examples

Continued

So, y = p(t) =227+ 1.7t 4 .05¢2.

This answers part (1). For part (2), for year 2010, we have
t = 30 and predicted population is

p(30) = 227 + 1.7 % 30 + .05 x 30° = 323 mi.

Similarly, for year 2020, wehave t = 40 and predicted
population is

p(30) = 227 + 1.7 40 + .05 x 40° = 375 mi.
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Network Analysis Examples

Basic Network

A network consists of junctions and branches. Following is an
example of network:

Such network systems are used to model variety of situations,
including in economics, traffic, telephone signal and electrical
engineering.
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Network Analysis Examples

Continued

Such models assumes that the total flow into a junction is
equal to total flow out of the junction. Accordingly,
above network is represented by

x=y+13+z.
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Network Analysis Examples

Example 1.3.3

The flow of traffic through a network of telephone towers is
shown in the following figure:

30 X1 15
@

{ /]

7 (D= D

» Solve this system for xq, X0, X3, X4, Xs.
» Find the traffic flow when x, = 20 and x3 = 5.
» Find the traffic flow when x, = 15 and x3 = 0.
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Network Analysis Examples

Continued

Solution: From junction A, we get
x1+x =30
From junction B, we get
X1 +x3=154+ x4 OR X1 +x3—x4 =15
From junction Y, we get
Xo +20 = x3 + x5 OR Xo — x3 — x5 = —20
From junction Z, we get

X4 + X5 = 35.
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Network Analysis Examples

Continued

We will write the system in a better way:

X1 +Xx =30
X1 +x3 —Xxy =15
Xo —X3 —x5 = —20

Xs +X5 =35

To solve this linear system, we write the augmented matrix:

11 0 0 0 30
10 1 -1 0 15
01 -1 0 -1 -20
00 0 1 1 35
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Network Analysis Examples

Continued

Reduce this matrix to row-echelon form. Subtract row 1 from

row 2:
1 1 0 0 0 30

0 -1 1 -1 0 =15
o1 -1 0 -1 -20
o 0 0 1 1 35

Add second row to third:

1 1.0 0 0 30
0 -1 1 -1 0 =15
0 0 0 -1 -1 =35
0 0 01 1 35
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Network Analysis Examples

Continued

Add third roe to fourth:

1 1.0 0 0 30
0 -1 1 -1 0 -15
0 0 0 -1 -1 =35
0 0 0 0 O 0

Multiply second row by -1 and third row by -1:

11 0 00 30
01 -1 10 15
00 0 11 35
00 0 0O O

The matrix is in row-echelon form.
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Network Analysis Examples

Continued

The corresponding linear system is given by:

X1 +X =30
X2 —X3 +Xa =15
X4 +X5 = 35
0 =0
x; =300 —t
Xp = t,
With x, = t, x3 = s, X3 =S,
X =15 —t+s,

x5 =35 —x, =150+t —s.
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Network Analysis Examples

Continued

This answers (1). For (2) t = x, =20,s = x3 = 5. So,
X1 = 10, Xp = 20, X3 = 5, Xg = 0, X5 = 30.
For (3) t = x2 = 15,5 = x3 = 0. So,

X1 = 15, Xp = 15, X3 = 0, Xg = 0, X5 = 35.
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Example 1.3.4
Kirchhoff’s Laws

Kirchhoff's Laws

Systems of Linear equations is also used in electrical network.
Analysis of electrical network is guided by two properties
known as Kirchhoff’s Laws:

» All the current flowing into a junction must flow out of it.

» The sum of the products IR (/ is current and R is
resistance) around a closed path is equal to the total
voltage.

A battery is denoted by |- or | and the resistance is
denoted by
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Example 1.3.4
Kirchhoff’s Laws

Example 1.3.4

Consider the electrical circuit.

I 3
Ri=4 ‘

(The circuit should be connected, | could not draw a better
one.)
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Example 1.3.4
Kirchhoff’s Laws

Continued

Use Kirchhoff-Law to determine /1, b, 5.
Solution: Apply (1) of Kirchhoff-Law to junction J;, we have
L +h =L Egn—1

Applying the same to J, wil give the same equation. So, we

will not write it.
Now apply (2) of Kirchhoff-Law

Rlll +R2/2 :3
{ Rib +Ryls =1 OF

4/1 —|—3/2 =3 Eqn -2
3/2 +/3 =1 Eqn -3
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Example 1.3.4
Kirchhoff’s Laws

Continued

The the network system is given by

/]_ —/2 +I3 =0 Eqn -1
4-/1 —|—3/2 =3 Eqn -2
3/2 +/3 =1 Eqn -3

The augmented matrix is:

1 -1 10
4 3 0 3
0 3 11

Now, we reduce this matrix to row-echelon form.
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Example 1.3.4
Kirchhoff’s Laws

Continued

To dothis, first subtract 4 time first reo from second:

o O

oo\||

'—l

P N
~

= W o

Divide row two by 7:

O O =
W = |

[y
I—‘l =
ENIES
—~Nw O
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Example 1.3.4
Kirchhoff’s Laws

Continued

Subtract 3 times rwo two from row three:

1 -1 1 0

0 1 -% 32

0 0 E7 _72
7 7

Divide row three by £:

1 -1 1 0

o1 3 g

00 1 -2
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Example 1.3.4
Kirchhoff’s Laws

Continued

Now, we further reduce it to Gauss-Jordan form. To do this,
add second row to first:

10 04 1%9
01 -7 37
00 1 -2
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Example 1.3.4
Kirchhoff’s Laws

Continued

Now, add 2 time third roe to second:

100%
010 %
001 -2

The corresponding linear system s given by,

Satya Mandal
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