# Chapter 1: System of Linear Equations § 1.3 Application of Linear systems (Read Only)

Satya Mandal

U. Kansas **Arrowtic** K-**Theory** Fall 2025

### Goals

In this section, we do a few applications of linear systems, as follows.

- Fitting polynomials,
- Network analysis,
- Kirchoff's Laws for electrical networks

## Invincibility of Linear Algebra

System of linear equations is much easier to handle than nonlinear systems. (I do not mean for this class only, I mean for expert mathematicians and scientists.) In fact, it is really very difficult to handle nonlinear systems. That is why, there is a wide range of applications of linear systems.

## Number of points needed

#### Recall the facts:

- ▶ there is exactly one line y = c + mx that passes through two given points.
- ▶ there is exactly one parabola  $y = ax^2 + bx + c$  that passes through three given points.
- More generally, given n + 1 points in the plane, there is exactly one polynomial

$$p(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$$
 of degree  $n$ 

so that the graph y = p(x) will pass through these points.



## Method to fit polynomial

Suppose a collection of data is represented by n points:

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$$

Assume the x-coordinates  $x_1, x_2, \dots, x_n$  are distinct. We determine a UNIQUE polynomial

$$p(x) = a_0 + a_1 x_1 + a_2 x^2 + \dots + a_{n-1} x^{n-1}$$
 with  $\deg(p) \le n-1$ 

so that the graph of y = p(x) passes through these points.

- ▶ Given *n* such points, to determine p(x) we need to find the coefficients  $a_0, a_1, \ldots, a_{n-1}$ .
- Since  $(x_i, y_i)$  passes through the graph of y = p(x), we have  $y_i = p(x_i)$ .

More explicitly,

This is a linear system of n equations, with n unknowns (variables)  $a_0, a_1, a_2, \ldots, a_{n-1}$ .

The augmented matrix of this linear system is:

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & y_1 \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} & y_2 \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} & y_3 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & y_n \end{pmatrix}$$

and the coefficients matrix is

$$\begin{pmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\ 1 & x_3 & x_3^2 & \cdots & x_3^{n-1} \\ \cdots & \cdots & \cdots & \cdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} \end{pmatrix}.$$

This matrix is called **Vandermonde-matrix** in  $x_1, x_2, \dots, x_n = -\infty$ 

- Since  $x_1, \ldots, x_n$  are assumed to be distinct, it is known that the linear system (1), has a unique solution.
- We can reduce the augmented matrix to row echelon form and solve for  $a_0, a_1, \ldots, a_{n-1}$ .

## Example 1.3.1

Determine the polynomial function (of degree 2) that passes through the points (2,4),(3,6),(4,10).

**Solution**: Let  $p(x) = a + bx + cx^2$ . Since these points pass through the graph of  $y = p(x) = a + bx + cx^2$ , we have

$$\begin{cases} a +b2 +c2^2 = 4 \\ a +b3 +c3^2 = 6 \\ a +b4 +c4^2 = 10 \end{cases} \text{ or } \begin{cases} a +2b +4c = 4 \\ a +3b +9c = 6 \\ a +4b +16c = 10 \end{cases}$$

The augmented matrix of this system is:

$$\left(\begin{array}{ccccc}
1 & 2 & 4 & 4 \\
1 & 3 & 9 & 6 \\
1 & 4 & 16 & 10
\end{array}\right)$$

Now we reduce the matrix to the row-echelon form. To do this subtract row-1 from row-2 and row-3:

$$\left(\begin{array}{cccc}
1 & 2 & 4 & 4 \\
0 & 1 & 5 & 2 \\
0 & 2 & 12 & 6
\end{array}\right)$$

Now, subtract 2 times row-2 from row-3:

$$\left(\begin{array}{cccc}
1 & 2 & 4 & 4 \\
0 & 1 & 5 & 2 \\
0 & 0 & 2 & 2
\end{array}\right)$$

Divide the last row by 2:

$$\left(\begin{array}{cccc}
1 & 2 & 4 & 4 \\
0 & 1 & 5 & 2 \\
0 & 0 & 1 & 1
\end{array}\right)$$

The matrix is in row-echelon form. The linear system corresponding to this matrix is:

$$\begin{cases} a +2b +4c = 4 \\ b +5c = 2 \\ c = 1. \end{cases}$$

So 
$$c = 1$$
,  $b = 2 - 5 = -3$ ,  $a = 4 - 4 + 6 = 6$ 

So

$$p(x) = a + bx + cx^2 = 6 - 3x + x^2.$$

You can use TI to graph it, and check that the graph passes through the given three points.

## Example 1.3.2

Here is some US census population data:

| Year         | 1980 | 1990 | 2000 |
|--------------|------|------|------|
| population y | 227  | 249  | 281  |

Here population is given in millions.

- ► Fit a quadratic polynomial passing through these points.
- Use it to predict population in year 2010 and 2020.

**Solution:** Let t be the variable time and set t=0 for the year 1980. The table reduces to

| t | 0   | 10  | 20  |
|---|-----|-----|-----|
| y | 227 | 249 | 281 |



Let  $p(t) = a + bt + ct^2$  be the polynomial that fits this data.

Since the data points pass through the graph of  $y = p(t) = a + bt + ct^2$ , we have

$$\begin{cases} a + b0 + c0^2 = 227 \\ a + b10 + c10^2 = 249 \\ a + b20 + c20^2 = 281 \end{cases}$$

$$\begin{cases} a = 227 \\ a +10b +100c = 249 \\ a +20b +400c = 281 \end{cases}$$

The augmented matrix is

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 227 \\
1 & 10 & 100 & 249 \\
1 & 20 & 400 & 281
\end{array}\right)$$

Now use TI-84 (or you can hand reduce) to reduce the matrix to Gauss-Jordan form:

$$\left(\begin{array}{ccccc}
1 & 0 & 0 & 227 \\
0 & 1 & 0 & 1.7 \\
0 & 0 & 1 & .05
\end{array}\right)$$

So, 
$$a = 227, b = 1.7, c = 0.05$$

So, 
$$y = p(t) = 227 + 1.7t + .05t^2$$
.

This answers part (1). For part (2), for year 2010, we have t = 30 and predicted population is

$$p(30) = 227 + 1.7 * 30 + .05 * 30^2 = 323 \text{ mi.}$$

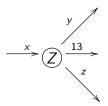
Similarly, for year 2020, we have t=40 and predicted population is

$$p(30) = 227 + 1.7 * 40 + .05 * 40^2 = 375 mi.$$



#### Basic Network

A network consists of junctions and branches. Following is an example of network:



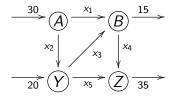
Such network systems are used to model variety of situations, including in economics, traffic, telephone signal and electrical engineering.

Such models assumes that the total flow into a junction is equal to total flow out of the junction. Accordingly, above network is represented by

$$x = y + 13 + z$$
.

## Example 1.3.3

The flow of traffic through a network of telephone towers is shown in the following figure:



- $\triangleright$  Solve this system for  $x_1, x_2, x_3, x_4, x_5$ .
- ▶ Find the traffic flow when  $x_2 = 20$  and  $x_3 = 5$ .
- ▶ Find the traffic flow when  $x_2 = 15$  and  $x_3 = 0$ .



**Solution:** From junction A, we get

$$x_1 + x_2 = 30$$

From junction B, we get

$$x_1 + x_3 = 15 + x_4$$
 OR  $x_1 + x_3 - x_4 = 15$ 

From junction Y, we get

$$x_2 + 20 = x_3 + x_5$$
  $OR$   $x_2 - x_3 - x_5 = -20$ 

From junction Z, we get

$$x_4 + x_5 = 35$$
.

We will write the system in a better way:

$$\begin{cases} x_1 + x_2 & = 30 \\ x_1 + x_3 - x_4 & = 15 \\ x_2 - x_3 - x_5 & = -20 \\ x_4 + x_5 & = 35 \end{cases}$$

To solve this linear system, we write the augmented matrix:

$$\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
1 & 0 & 1 & -1 & 0 & 15 \\
0 & 1 & -1 & 0 & -1 & -20 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)$$

Reduce this matrix to row-echelon form. Subtract row 1 from row 2:

$$\left(\begin{array}{ccccccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 1 & -1 & 0 & -1 & -20 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)$$

Add second row to third:

$$\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 0 & 0 & -1 & -1 & -35 \\
0 & 0 & 0 & 1 & 1 & 35
\end{array}\right)$$

Add third roe to fourth:

$$\left(\begin{array}{cccccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & -1 & 1 & -1 & 0 & -15 \\
0 & 0 & 0 & -1 & -1 & -35 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

Multiply second row by -1 and third row by -1:

$$\left(\begin{array}{ccccccc}
1 & 1 & 0 & 0 & 0 & 30 \\
0 & 1 & -1 & 1 & 0 & 15 \\
0 & 0 & 0 & 1 & 1 & 35 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)$$

The matrix is in row-echelon form.

The corresponding linear system is given by:

$$\begin{cases} x_1 + x_2 & = 30 \\ x_2 - x_3 + x_4 & = 15 \\ x_4 + x_5 & = 35 \\ 0 & = 0 \end{cases}$$

With 
$$x_2 = t$$
,  $x_3 = s$ , 
$$\begin{cases} x_1 = 300 - t \\ x_2 = t, \\ x_3 = s, \\ x_4 = 15 - t + s, \\ x_5 = 35 - x_4 = 150 + t - s. \end{cases}$$

This answers (1). For (2) 
$$t = x_2 = 20, s = x_3 = 5$$
. So,

$$x_1 = 10$$
,  $x_2 = 20$ ,  $x_3 = 5$ ,  $x_4 = 0$ ,  $x_5 = 30$ .

For (3) 
$$t = x_2 = 15, s = x_3 = 0$$
. So,

$$x_1 = 15$$
,  $x_2 = 15$ ,  $x_3 = 0$ ,  $x_4 = 0$ ,  $x_5 = 35$ .

#### Kirchhoff's Laws

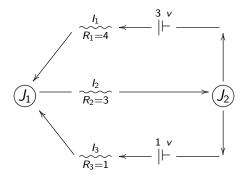
Systems of Linear equations is also used in electrical network. Analysis of electrical network is guided by two properties known as **Kirchhoff's Laws:** 

- ▶ All the current flowing into a junction must flow out of it.
- ▶ The sum of the products *IR* (*I* is current and *R* is resistance) around a closed path is equal to the total voltage.

A battery is denoted by  $|\vdash or \dashv|$  and the resistance is denoted by  $\sim \sim \cdot$ .

## Example 1.3.4

Consider the electrical circuit.



(The circuit should be connected, I could not draw a better one.)

Use Kirchhoff-Law to determine  $I_1$ ,  $I_2$ ,  $I_3$ .

**Solution:** Apply (1) of Kirchhoff-Law to junction  $J_1$ , we have

$$I_1 + I_3 = I_2 \quad Eqn - 1$$

Applying the same to  $J_2$  wil give the same equation. So, we will not write it.

Now apply (2) of Kirchhoff-Law

$$\begin{cases} R_1 I_1 & +R_2 I_2 & = 3 \\ & R_2 I_2 & +R_3 I_3 & = 1 \end{cases} OR$$

$$\begin{cases} 4I_1 & +3I_2 & = 3 & Eqn-2 \\ & 3I_2 & +I_3 & = 1 & Eqn-3 \end{cases}$$

The the network system is given by

$$\begin{cases} l_1 & -l_2 & +l_3 & = 0 & Eqn - 1 \\ 4l_1 & +3l_2 & = 3 & Eqn - 2 \\ & 3l_2 & +l_3 & = 1 & Eqn - 3 \end{cases}$$

The augmented matrix is:

$$\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 \\
4 & 3 & 0 & 3 \\
0 & 3 & 1 & 1
\end{array}\right)$$

Now, we reduce this matrix to row-echelon form.

To dothis, first subtract 4 time first reo from second:

$$\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 7 & -4 & 3 \\
0 & 3 & 1 & 1
\end{array}\right)$$

Divide row two by 7:

$$\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 3 & 1 & 1
\end{array}\right)$$

Subtract 3 times rwo two from row three:

$$\left(\begin{array}{cccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & \frac{19}{7} & -\frac{2}{7}
\end{array}\right)$$

Divide row three by  $\frac{19}{7}$ :

$$\left(\begin{array}{ccccc}
1 & -1 & 1 & 0 \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right)$$

Now, we further reduce it to Gauss-Jordan form. To do this, add second row to first:

$$\left(\begin{array}{cccc}
1 & 0 & \frac{3}{7} & \frac{3}{7} \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{19}
\end{array}\right).$$

Now subtract  $\frac{3}{7}$  times third row from first:

$$\left(\begin{array}{cccc}
1 & 0 & 0 & \frac{9}{19} \\
0 & 1 & -\frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & -\frac{2}{10}
\end{array}\right).$$

Now, add  $\frac{4}{7}$  time third roe to second:

$$\left(\begin{array}{cccc} 1 & 0 & 0 & \frac{9}{19} \\ 0 & 1 & 0 & \frac{7}{19} \\ 0 & 0 & 1 & -\frac{2}{19} \end{array}\right).$$

The corresponding linear system s given by,

$$\begin{cases} I_1 & = \frac{9}{19} \\ I_2 & = \frac{7}{19} \\ I_3 & = -\frac{2}{19} \end{cases}$$