Chapter 2
First Order ODE
§ 2.5 Existence and Uniqueness of
Solutions

Satya Mandal

U. Kansas **Arrowtic** *K*-**Theory**Fall 2025

First Order DE

 \triangleright Recall the general form of the 1st Order ODEs (FODE):

$$\frac{dy}{dt} = f(t, y) \tag{1}$$

▶ An ODE, with an initial value condition $y(t_0) = y_0$ is called an Initial Value Problem (IVP). So, a 1st Order IVP looks like:

$$\frac{dy}{dt} = f(t, y) \qquad y(t_0) = y_0 \tag{2}$$

Purpose

In this section, we consider the following two Question:

- ▶ Question of Existence: Given a 1st Oder IVP, as above (2), whether the IVP (2) has a solution $y = \varphi(t)$?
- ▶ Question of Uniqueness: In case the IVP (2) has a solution, is the solution unique?

In the case of 1^{st} order IVP, method of solutions (using integrating factors) show solution usually exists and is unique. But a definitive answer to these questions is much more restrictive. We state one such theorem, in the next frame.

Theorem 2.5.1: Consider the 1st-order Linear IVP

$$\begin{cases} y' + p(t)y = g(t) \\ y(t_0) = y_0 \end{cases}$$
 (3)

Assume p(t), g(t) are continuous on an interval $I : \alpha < t < \beta$ and t_0 is in I. Then

- ▶ The IVP (3) has a solution $y = \varphi(t)$.
- ▶ The domain of $y = \varphi(t)$ is I.
- ▶ The solution $y = \varphi(t)$ is unique, on I.

Continued

The proof of the existence of a solution would be a repetition of the steps followed in § 2.1 to solve Linear ODEs.

The Case of Non-Linear ODEs

Now consider a nonlinear First Order IVP

$$\begin{cases}
\frac{dy}{dt} &= f(t, y) \\
y(t_0) &= y_0
\end{cases}$$

- In general, existence of a solution $y = \varphi(t)$ for such an IVP is not guaranteed, without further conditions on f(y, t).
- Even when a solution exists, it is not guaranteed that the solution $y = \varphi(t)$ would be unique. We would not state any other existence or uniqueness theorems.

- ► However, we saw that separable ODEs (§ 2.2) have solutions, whenever the respective integrals exists. Similarly, we saw Homogeneous and Bernoulli's ODEs (§ 2.4) have solutions (under some restrictions that we ignored to state).
- ► Likewise, we would see in future sections, that some other forms of ODEs have solutions.
- Again, things can be deceptive, as shown in the next example.

A Deceptive Example

Consider the IVP

$$\frac{dy}{dt} = -\frac{t}{y} \qquad y(0) = 0$$

This IVP seem to have a solution, while it does not.

Clirification: The ODE is separable. We have

$$\int ydy = -\int tdt + c \Longrightarrow \frac{y^2}{2} = -\frac{t^2}{2} + c$$

Now, y(0) = 0 implies c = 0

So, the solution to the ODE, in the implicit form is

$$\frac{y^2}{2} = -\frac{t^2}{2} \Longrightarrow y^2 = -t^2$$

So, in the explicit form, the solution is

$$y = \pm \sqrt{-t^2}$$
 which is not a real valued function.

So, the IVP does not have a (real) solution.

Nature of Problems

We would use Theorem 2.5.1 to determine the interval, on which a Linear IVP has a solution.

Example 1

Consider the initial value problem (IVP)

$$\begin{cases} (t+1)(t-1)(t-2)\frac{dy}{dt} + e^{t^2}y &= \sin t^2 \\ y(3) &= 1 \end{cases}$$

Use Theorem 2.5.1 to determine the interval in which this IVP has (Do not try to solve).

▶ Write the equation in the standard form (3):

$$\begin{cases} \frac{dy}{dt} + \frac{e^{t^2}}{(t+1)(t-1)(t-2)}y &= \frac{\sin t^2}{(t+1)(t-1)(t-2)}\\ y(3) &= 1 \end{cases}$$

Continued

- ▶ $p(t) = \frac{e^{t^2}}{(t+1)(t-1)(t-2)}$ is not defined at t = -1, 1, 2. Likewise $g(t) = \frac{\sin t^2}{(t+1)(t-1)(t-2)}$ is not defined at t = -1, 1, 2. Split the number line as: $(-\infty, -1), (-1, 1), (1, 2), (2, \infty)$.
- ▶ Both p(t), g(t) are continuous on the intervals $(-\infty, -1)$, (-1, 1), (1, 2), $(2, \infty)$.
- ▶ The initial *t*-value t = 3 is in $(2, \infty)$
- ▶ By theorem 2.5.1 the IVP has a unique solution on the interval $(2, \infty)$.

Example 2

Consider the initial value problem (IVP)

$$\begin{cases} \cos t \frac{dy}{dt} + y &= 1 + t^2 \\ y(\pi) &= 0 \end{cases}$$

Use Theorem 2.5.1 to determine the interval in which this IVP has (Do not try to solve).

▶ Write the equation in the standard form (3):

$$\begin{cases} \frac{dy}{dt} + \frac{1}{\cos t}y &= \frac{1+t^2}{\cos t} \\ y(\pi) &= 0 \end{cases}$$

Continued

- ▶ $p(t) = \frac{1}{\cos t}$ and $g(t) = \frac{1+t^2}{\cos t}$ are not defined at $t = \cdots, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \cdots$
- ► Accordingly, split the number line as:

$$\cdots$$
, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$, \cdots

- ▶ Both p(t) and g(t) are continuous on these intervals.
- ▶ The initial *t*-value $t = \pi$ is in $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.
- ▶ By theorem 2.5.1 the IVP has a unique solution on $\left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$.

Nonlinear DE

- ► Nonlinear ODEs would not behave as nicely as in theorem 2.5.1.
- Uniqueness is not guaranteed.
- ► Solutions, if exist, may come out in an implicit form.
- ➤ Some ODEs may not have an analytic solution. In such cases, numerical solutions would be an option.