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Preview

Goals

We imitate the concept of length and angle
between two vectors in R?, R3 to define
the same in the n—space R"”. Main topics are:

» Length of vectors in R".

» Dot product of vectors in R”
(It comes from angles between two vectors).

» Cauchy Swartz Inequality in R”.
» Triangular Inequality in R", like that of triangles.
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Length and Angle

Length and Angle in plane R?

i/
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Length and Angle

» We discussed, two parallel arrows, with equal length,
represented the Same Vector v.

» In particular, there is one arrow,
representing v, starting at the origin.
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Length and Angle

Continued

» Such arrows, starting at the origin, are identified with
points (x,y) in R2. So, we write v = (vq, v»).
» The length of the vector v = (v, v») is given by

vl = \/v2 + 2.

» Also, the angle 6 between two such vectors
v = (v1,w) and u = (uy, u,) is given by
viup + Vol

cosf =
V]| [lull

» Subsequently, we imitate these two formulas.
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Length and Angle

Length on R”

Definition. Let v = (vi, va,...,Vv,) be a vector in R".

» The length or magnitude or norm of v is defined as

Ivil = v+ 442

» So,
» We say v is a unit vector if ||v|| = 1.

v =0<=v=0.
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Length and Angle

Theorem 6.1.1: Length in R"

Let v = (v1,v,...,Vv,) be a vector in R” and ¢ € R be a
scalar. Then |lcv| = |c||v].
Proof.

» We have cv = (cvy, cva, ..., V).

» Therefore, ||cv|| =

V(ew)? + (eva)? + - + (cvi)?

=R+t v2) =l vl

The proof is complete. [ |
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Length and Angle

Theorem 6.1.2: Length in R"

Let v = (v1,v,..., v,) be a non-zero vector in R". Then

<

has length 1.

We say, u is the unit vector in the direction of v.
Proof. (First, note that the statement of the theorem would
not make sense, if v =10.) Now,

1 1
Jull = H—H _ \—\ vl = 1.
il = [

The proof is complete. [
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Length and Angle

Comments

» Example. The standard basis vectors e; = (1,0, 0),
e, =(0,1,0), e; = (0,0,1) € R3 are unit vectors in R3.
» Example. Similarly, recall the standard basis of R”

e; 1,0,0,.
2:(07170a 70)
e;3 0,0,1,.

e,=(0,0,0,...,1)
Here, each e; is a unit vectors in R".
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Length and Angle

Continued: Direction

» For a nonzero vector v and scalar ¢ > 0
cv points to the same direction as v and
—cv points to direction opposite to v.
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Length and Angle

Distance

Let u = (v, u0,...,U,), v= (v, Vv,...,V,) be two vectors in
R". Then the distance between u and v is defined as

d(u,v) =Ju—v| = V(g — v1)> + (e — v)2 + - + (u, — )%

It is easy to see:
1. d(u,v) > 0.
2. d(u,v) = d(v,u).
3. d(u,v) =0 if and only if u =v.
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Problems

Example 6.1.1

Letu=(1,2,2), v=(-31,-2).
1. Compute [[u ||, [[v |, || u+ v |. Solution:

Jul=v12+22+22=19=3

v [|= /(=32 +12+ (-2)2 = V14.
Jutv|=+/(1-3)F2+1)2+ (222 =V13.

2. Compute distance d(u,v). Solution:

du,v) =1 +32+(2-12+(2+2)2=+33
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Problems

Example 6.1.2

Let u=(—1,v10,3,4).
1. Compute the unit vector in the direction of u. Solution:
First, || u = y/(~1)% + (VIO) + 32 + 42 = 6. The unit
vector in the direction of u is

u (—1,\/1_0,3,4)_( 1 V10 3 4)
- 7676 :

ST ul 6 6 6

2. Compute the unit vector in the direction opposite of u.

‘on: s —e— (1 =vio -3 —a
Solution: Answer is e_<6, 3 ,6,6).
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Problems

Example 6.1.3

Let u = (cosf,sinf) € R?, where —7 < 6 < 7.

(1) Compute the length of u,

(2) compute the vector v in the direction of u and || v ||= 4,
(3) compute the vector w in the direction of opposite to u
and same length.

Solution: (1) We have || u ||= \/cos?6 +sin®0 = 1

(2) Length of v is four times that of u, and

they have same direction. So, v = 4u = 4(cos 6, sin6).

(3) w = —u = —(cos#,sinf).
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Problems

Example 6.1.4

Let v be a vector in the same direction as
u=(-1,7,1) and |v] =24

Compute v.
Solution: Write v = cu with ¢ > 0. Given ||v|| = 4 So,

4=|lv]| = lleu] = [c[ Jull = e\/(=1)2 + 72 + 12 = cV? + 2

So,c= S5 andv=cu=_“=(-1m1).
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Problems

Example 6.1.5

Let v =(—1,3,v2,7).
» (1) Find u such that u has same direction as v

and one-half its length.
Solution: In general,

lev = Tlel v

So, in this case,

13 1 =«
-1 2 >: — - — = .
( 737\/_77]— < 2727\/572)
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Problems

Continued

» (2) Find u such that u has opposite direction as v
and one-fourth its length.
Solution: Since it has opposite direction

1 1 1 1
u=——v=—— <_1737\/§77T) = _7_§7__7_Z
4 4 AN

» (3) Find u such that u has opposite direction as v
and twice its length.
Solution: Since it has opposite direction

u=—2v=-_2 (—1,3, V2, w) — (2,6, —2V/2, —27).
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Problems

Example 6.1.6

Find the distance between

=(-1,2,3,7) and v=(1,0,5m+2).

Solution: Distance

d(u,v) =[u—v|=[(-22-2-2) |

= V=22 + 22+ (-2 + (-2 =4
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Dot Product and Angles between two vectors

Definition: Dot Product

Definition. Let
u=(up, t,...,uy), v=_(vi,va,...,v,) €R"
be two vectors in R”. The dot product of u and v is defined as

U-v=1uvy+ UVo~+---~+ UpVp.
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Dot Product and Angles between two vectors

Theorem 6.1.3

Suppose u,v,w € R" are three vectors and c is a scalar. Then
1. (Commutativity): u-v =v - u.
2. (Distributivity): u-(v+w)=u-v+u-w.
3. (Associativity): c(u-v) = (cu)-v=u-(cv).
4. (dot product and Norm): v -v =| v ||.
5. We havev-v>0andv:-v<=v=0.
Proof. Follows from definition of dot product.

Remark. The vector space R” together with
(1) length, (2) dot product is called the Euclidean n—Space.
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Angle Between Two Vectors

Theorem 6.1.4: Cauchy-Schwartz Inequality

Suppose u,v € R" are two vectors. Then

ju-vf < ulfflv]]

Proof.
» (Case 1.): Assume u=0.

» Then |ju]| =0 and the Right Hand Side is zero.
» Also, the Left Hand Side = |u-v|=1]0-v| =0
» So, both sides are zero and the inequality is valid.
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Angle Between Two Vectors

Continued

> (Case 2.): Assume u # 0. So, u-u = ||ul|> > 0. Then
> Let t be any real number (variable) . We have

(tu+v) - (tu+v) = |(tu+v)|* > 0.
» Expanding:
t2(u-u) +2t(u-v) + (v-v) > 0.
> Write
a=u-u=[ul>*>0, b=2u-v), c=(v-v).
» The above inequality can be written as

f(t)=at> + bt +c>0 for all t.



Angle Between Two Vectors

Continued

»  » From the graph of y = f(t), we see that, f(t) =0
either has no real root (in the case b?> — 4ac < 0)
or has a single repeated root (in the case b> — 4ac = 0).

» So,
b? — 4ac <0 or b? < 4ac.

» This means
210112
4u-v)? < 4u-u)(v-v) =4 ul® |v]*.
» Taking square root, we have
lu-v| < Jufffv].

The proof is complete. [ ]
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Angle Between Two Vectors

Definition: Angle Between Two Vectors

Suppose u,v € R” are two nonzero vectors.

» Cauchy-Swartz Inequality ensures —1 < Hulljll\‘\IVH < 1.
So, the following definition makes sense.

» Definition. The angle ¢ between u,v € V is defined by
the equation:

cosf = v 0<fg<m.
[[ul] {]v]]

» Definition We say that they are orthogonal, if u-v = 0.
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Angle Between Two Vectors

Theorem 6.1.5: Trianguler Inequality

Suppose u,v € R" are two vectors. Then
lutvl <l + vl

Proof. First,

lu+v|P=(u+v) - (u+v)=u-u+2u-v)+v-v

2 2 2 2

= [Jull® +2(u - v) + [lv][” < [Jul]” + 2]u - v] + [Jv]]".

By Cauchy-Schwartz Inequality [u-v | < |u]|||v ] . So,
2

TutvP<fful+2ullvi+IviP=ul+]vi)

The theorem is established by taking square root. [ |
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Angle Between Two Vectors

Theorem 6.1.6: Pythagorean

Suppose u,v € R" are two orthogonal vectors. Then
2 2 2
[lu+v[|” = Jlul[" + fv]]".
Proof.
lu+v]* = (utv)-(utv) = vut2(u-v)+v-v = [fuf*+v]*.

The proof is complete. [ |
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Problems

Example 6.1.7

Let u=(0,1,—1,1,—1) and v = (+/5,1, 3,3, —1).
» (1) Find u-v.
Solution: We have

u-v= (07 17 _17 1a _1) ’ (\/g’ 1’ _3’3’ _1)

=0+1+3+3+1=8.

» (2) Compute u - u.
Solution: We have

u-u=(01,-1,1,-1)-(0,1,-1,1,—-1) = 4
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Problems

Continued

» (3) Compute || u ||?.
Solution: From (2), we have

||u||2:u-u:4.

> (4) Compute (u - v)v.
Solution: From (1), we have

(uv)v =4v = 4(/5,1,-3,3,—1) = (4V5,4, —12,12, —4).
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Problems

Example 6.1.7

Let u, v be two vectors in R". It is given,

Find (3u —v) - (u—3v).

Solution: We have

(3u—v)-(u—3v) = 3u-u—10u-v+3v-v = 3%9—10%(—7)+3%16 = 5
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Problems

Example 6.1.8

Let u = (1,—v/2,1) and v = (21/2,3, —2/2).

Verify Cauchy-Schwartz inequality.

Solution: We have

Jull = /12 + (~V2?2 +12 =2 and

vl = /2P + # + (—2v2p =
Also u-v=1%2V2+(=V2)*(3), +1%(-2V2) = -3v2.

Therefore, it is verified that
u-v| = [3v3] =3v2 <255 = ||u]| [lv]|.




Problems

Example 6.1.9

Let u = (1,—v/2,1) and v = (21/2,0, —2/2).

Find the angle 6 between them.

Solution: The angle 6 between u and v is defined by:
u-v

cosf) = ——— 0<o<m.
[ u ] vl

» We have

Jull = 12+ (V22 + 12 =2 and

|v|=v8+0+8=4
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Problems

Continued

» Also
u-v=1%v24(—v2%0+1%(-2v2)=0.
> So, u-v
cos = —— = 0.
(R
» Therefore,
0=m/2.
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Problems

Example 6.1.10

Let u=(1,-3,-2,-7).
Find all vectors that are orthogonal to u.

Solution: Suppose v = (x1, X2, X3, X4) be orthogonal to u.
By definition, it means,

Uu-v=x31—3x—x3—7Ix, =0
A parametric solution to this system is
X =5, x3=1t, x4a=u, Xy =35+ 2t+Tu
So, the set of vectors orthogonal to u, is given by
{v=(3s+2t+7u,s, t,u): s, t,uecR}



Problems

Example 6.1.11

Let u = (7,7,7) and v = (v/3,0, —/3)

Determine, if u, v are orthogonal to each other or not?

Solution: We need to check, if u-v = 0 or not. We have
u-v=nx(V3)+7x0+mx%(—V3)=0

So, u, v are orthogonal to each other.
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Problems

Example 6.1.12

Let u = (,7,7) and v = (v/3,1, —V/3).

Determine if are u, v orthogonal to each other or not?

Solution: We need to check, if u-v = 0 or not. We have
u-v=mx(V3)+7x1+m%(—V3)=7+#0.

So, u, v are not orthogonal to each other.
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Problems

Example 6.1.13

Let u = (v/3,v/3,V3), v = (—V3, =3, —2V/3).

Verify, triangle Inequality. Solution: We have

Jull = (V372 + (V32 + (V3% = 3,

vl = (V32 + (-V3P + (~2v3) = 3v2
Jutvl = [|0.0.~V3)| = /02 +-02 4 (32 = V3.

To Check: flu+v|?=3 < |lul®+|jv|]*=9+18.

So, the triangle inequality is verified.
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Problems

Example 6.1.14

Letu=(1,-1),v=(2,2).
Verify Pythagorean Theorem.
Solution:
» We haveu-v=1%2—1%2=0. So, u, v are orthogonal
to each other and Pythagorean Theorem must hold.
>

lull=vVI+ (12 =v2, |v|=v2Z+2=2V2
Ju+v]=(3,1) = V3+2 = V10.
» We need to check,

lutv |?’=10=[u||®> + | v||?>=2+8 So, itis verified



Problems

Example 6.1.15

Let u = (a, b), v = (b, —a). Verify Pythagorean Theorem.
Solution:

» We have u-v = ab — ba=0. So, u,v are orthogonal to
each other and Pythagorean Theorem must hold.

>

|ull=va+b?, |[v]|=vb>+a?
|u+v =] (a+bb—a)|
= /(a+ b)2+ (b—a)2 = +/2(a2 + b?)
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Problems

Continued

» We need to check,
[ utv 2= 2(2°+b%) =[ u ||> + || v [[°= (a*+b%)+(b*+a%)

» So, the Pythagorean Theorem is verified.
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