Preview
Length and Angle
Problems
Dot Product and Angles between two vectors
Angle Between Two Vectors
Problems

Chapter 6 Inner Product Spaces $\S 6.1$ Length and Dot Product in \mathbb{R}^n

Satya Mandal

U. Kansas

Arrowtic K-Theory

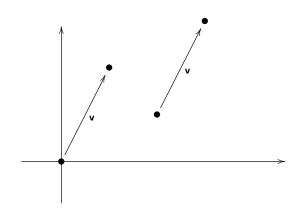
Fall 2025

Goals

We imitate the concept of length and angle between two vectors in \mathbb{R}^2 , \mathbb{R}^3 to define the same in the n-space \mathbb{R}^n . Main topics are:

- ▶ Length of vectors in \mathbb{R}^n .
- ▶ Dot product of vectors in \mathbb{R}^n (It comes from angles between two vectors).
- ightharpoonup Cauchy Swartz Inequality in \mathbb{R}^n .
- ▶ Triangular Inequality in \mathbb{R}^n , like that of triangles.

Length and Angle in plane \mathbb{R}^2



- ► We discussed, two parallel arrows, with equal length, represented the Same Vector v.
- ► In particular, there is one arrow, representing **v**, starting at the origin.

Continued

- Such arrows, starting at the origin, are identified with points (x, y) in \mathbb{R}^2 . So, we write $\mathbf{v} = (v_1, v_2)$.
- ▶ The length of the vector $\mathbf{v} = (v_1, v_2)$ is given by

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}.$$

Also, the angle θ between two such vectors $\mathbf{v} = (v_1, v_2)$ and $\mathbf{u} = (u_1, u_2)$ is given by

$$\cos \theta = \frac{v_1 u_1 + v_2 u_2}{\|\mathbf{v}\| \|\mathbf{u}\|}$$

Subsequently, we imitate these two formulas.

Length on \mathbb{R}^n

Definition. Let $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be a vector in \mathbb{R}^n .

▶ The length or magnitude or norm of **v** is defined as

$$\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}.$$

- ightharpoonup So, $\|\mathbf{v}\| = 0 \iff \mathbf{v} = 0$.
- ▶ We say **v** is a unit vector if $\|\mathbf{v}\| = 1$.

Theorem 6.1.1: Length in \mathbb{R}^n

Let $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be a vector in \mathbb{R}^n and $c \in \mathbb{R}$ be a scalar. Then $\|c\mathbf{v}\| = |c| \|\mathbf{v}\|$.

Proof.

- ightharpoonup We have $c\mathbf{v}=(cv_1,cv_2,\ldots,cv_n)$.
- ▶ Therefore, $||c\mathbf{v}|| =$

$$\sqrt{(cv_1)^2 + (cv_2)^2 + \cdots + (cv_n)^2}$$

$$= \sqrt{c^2 (v_1^2 + v_2^2 + \cdots + v_n^2)} = |c| \|\mathbf{v}\|.$$

The proof is complete.

Theorem 6.1.2: Length in \mathbb{R}^n

Let $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be a non-zero vector in \mathbb{R}^n . Then

$$\mathbf{u} = \frac{\mathbf{v}}{\parallel \mathbf{v} \parallel}$$
 has length 1.

We say, **u** is the **unit vector in the direction of v**.

Proof. (First, note that the statement of the theorem would not make sense, if $\mathbf{v} = \mathbf{0}$.) Now,

$$\|\mathbf{u}\| = \left\| \frac{1}{\|\mathbf{v}\|} \mathbf{v} \right\| = \left| \frac{1}{\|\mathbf{v}\|} \right| \|\mathbf{v}\| = 1.$$

The proof is complete.

Chapter 6 Inner Product Spaces §6.1 Length and Dot Product

Comments

- **Example.** The standard basis vectors $\mathbf{e}_1 = (1, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0)$, $\mathbf{e}_2 = (0, 0, 1) \in \mathbb{R}^3$ are unit vectors in \mathbb{R}^3 .
- **Example.** Similarly, recall the standard basis of \mathbb{R}^n

$$\begin{cases}
\mathbf{e}_{1} = (1, 0, 0, \dots, 0) \\
\mathbf{e}_{2} = (0, 1, 0, \dots, 0) \\
\mathbf{e}_{3} = (0, 0, 1, \dots, 0) \\
\dots \\
\mathbf{e}_{n} = (0, 0, 0, \dots, 1)
\end{cases} (1)$$

Here, each \mathbf{e}_i is a unit vectors in \mathbb{R}^n .

Continued: Direction

For a nonzero vector v and scalar c > 0 cv points to the same direction as v and -cv points to direction opposite to v.

Distance

Let $\mathbf{u} = (u_1, u_2, \dots, u_n)$, $\mathbf{v} = (v_1, v_2, \dots, v_n)$ be two vectors in \mathbb{R}^n . Then the distance between \mathbf{u} and \mathbf{v} is defined as

$$d(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \cdots + (u_n - v_n)^2}.$$

It is easy to see:

- 1. $d(\mathbf{u}, \mathbf{v}) > 0$.
- 2. $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$.
- 3. $d(\mathbf{u}, \mathbf{v}) = 0$ if and only if $\mathbf{u} = \mathbf{v}$.

Let
$$\mathbf{u} = (1, 2, 2), \quad \mathbf{v} = (-3, 1, -2).$$

1. Compute $\|\mathbf{u}\|$, $\|\mathbf{v}\|$, $\|\mathbf{u}+\mathbf{v}\|$. Solution:

$$\parallel \mathbf{u} \parallel = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3.$$

$$\|\mathbf{v}\| = \sqrt{(-3)^2 + 1^2 + (-2)^2} = \sqrt{14}.$$

$$\parallel \mathbf{u} + \mathbf{v} \parallel = \sqrt{(1-3)^+(2+1)^2 + (2-2)^2} = \sqrt{13}.$$

2. Compute distance $d(\mathbf{u}, \mathbf{v})$. Solution:

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{(1+3)^2 + (2-1)^2 + (2+2)^2} = \sqrt{33}$$

Let
$$\mathbf{u} = (-1, \sqrt{10}, 3, 4)$$
.

1. Compute the unit vector in the direction of \mathbf{u} . Solution: First, $\|\mathbf{u}\| = \sqrt{(-1)^2 + (\sqrt{10})^2 + 3^2 + 4^2} = 6$. The unit vector in the direction of \mathbf{u} is

$$\mathbf{e} = \frac{\mathbf{u}}{\parallel \mathbf{u} \parallel} = \frac{(-1, \sqrt{10}, 3, 4)}{6} = \left(-\frac{1}{6}, \frac{\sqrt{10}}{6}, \frac{3}{6}, \frac{4}{6}\right).$$

2. Compute the unit vector in the direction opposite of \mathbf{u} .

Solution: Answer is
$$-\mathbf{e} = \left(\frac{1}{6}, \frac{-\sqrt{10}}{6}, \frac{-3}{6}, \frac{-4}{6}\right)$$
.

Let $\mathbf{u} = (\cos \theta, \sin \theta) \in \mathbb{R}^2$, where $-\pi \le \theta \le \pi$.

- (1) Compute the length of \mathbf{u} ,
- (2) compute the vector \mathbf{v} in the direction of \mathbf{u} and $\parallel \mathbf{v} \parallel = 4$,
- (3) compute the vector \mathbf{w} in the direction of opposite to \mathbf{u} and same length.

Solution: (1) We have $\parallel \mathbf{u} \parallel = \sqrt{\cos^2 \theta + \sin^2 \theta} = 1$

- (2) Length of \mathbf{v} is four times that of \mathbf{u} , and they have same direction. So, $\mathbf{v} = 4\mathbf{u} = 4(\cos\theta, \sin\theta)$.
- (3) $\mathbf{w} = -\mathbf{u} = -(\cos \theta, \sin \theta)$.

Let v be a vector in the same direction as

$$\mathbf{u} = (-1, \pi, 1)$$
 and $\|\mathbf{v}\| = 4$.

Compute v.

Solution: Write $\mathbf{v} = c\mathbf{u}$ with c > 0. Given $\|\mathbf{v}\| = 4$ So,

$$4 = \|\mathbf{v}\| = \|c\mathbf{u}\| = |c| \|\mathbf{u}\| = c\sqrt{(-1)^2 + \pi^2 + 1^2} = c\sqrt{\pi^2 + 2}$$

So,
$$c = \frac{4}{\sqrt{\pi^2 + 2}}$$
 and $\mathbf{v} = c\mathbf{u} = \frac{4}{\sqrt{\pi^2 + 2}} \left(-1, \pi, 1 \right)$.

Let
$$\mathbf{v} = (-1, 3, \sqrt{2}, \pi)$$
.

▶ (1) Find **u** such that **u** has same direction as **v** and one-half its length.

Solution: In general,

$$\parallel c\mathbf{v} \parallel = |c| \parallel \mathbf{v} \parallel$$
.

So, in this case,

$$\mathbf{u} = \frac{1}{2}\mathbf{v} = \frac{1}{2}\left(-1, 3, \sqrt{2}, \pi\right) = \left(-\frac{1}{2}, \frac{3}{2}, \frac{1}{\sqrt{2}}, \frac{\pi}{2}\right).$$

Continued

▶ (2) Find u such that u has opposite direction as v and one-fourth its length.

Solution: Since it has opposite direction

$$\mathbf{u} = -\frac{1}{4}\mathbf{v} = -\frac{1}{4}\left(-1, 3, \sqrt{2}, \pi\right) = \left(\frac{1}{4}, -\frac{3}{4}, -\frac{1}{2\sqrt{2}}, -\frac{\pi}{4}\right)$$

▶ (3) Find u such that u has opposite direction as v and twice its length.

Solution: Since it has opposite direction

$$\mathbf{u} = -2\mathbf{v} = -2\left(-1, 3, \sqrt{2}, \pi\right) = (2, -6, -2\sqrt{2}, -2\pi).$$

Find the distance between

$$\mathbf{u} = (-1, 2, 3, \pi)$$
 and $\mathbf{v} = (1, 0, 5, \pi + 2).$

Solution: Distance

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = ||(-2, 2, -2, -2)||$$
$$= \sqrt{-(2)^2 + 2^2 + (-2)^2 + (-2)^2} = 4.$$

Definition: Dot Product

Definition. Let

$$\mathbf{u} = (u_1, u_2, \dots, u_n), \quad \mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{R}^n$$

be two vectors in \mathbb{R}^n . The dot product of \mathbf{u} and \mathbf{v} is defined as

$$\mathbf{u}\cdot\mathbf{v}=u_1v_1+u_2v_2+\cdots+u_nv_n.$$

Theorem 6.1.3

Suppose $\mathbf{u}, \mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ are three vectors and c is a scalar. Then

- 1. (Commutativity): $\mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}$.
- 2. (Distributivity): $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$.
- 3. (Associativity): $c(\mathbf{u} \cdot \mathbf{v}) = (c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v})$.
- 4. (dot product and Norm): $\mathbf{v} \cdot \mathbf{v} = ||\mathbf{v}||^2$.
- 5. We have $\mathbf{v} \cdot \mathbf{v} \geq 0$ and $\mathbf{v} \cdot \mathbf{v} \iff \mathbf{v} = \mathbf{0}$.

Proof. Follows from definition of dot product.

Remark. The vector space \mathbb{R}^n together with

(1) length, (2) dot product is called the Euclidean n-Space.

Theorem 6.1.4: Cauchy-Schwartz Inequality

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are two vectors. Then

$$|\mathbf{u} \cdot \mathbf{v}| \leq \|\mathbf{u}\| \|\mathbf{v}\|$$
.

Proof.

- ightharpoonup (*Case 1.*): Assume $\mathbf{u} = \mathbf{0}$.
 - ▶ Then $\|\mathbf{u}\| = 0$ and the Right Hand Side is zero.
 - Also, the Left Hand Side = $|\mathbf{u} \cdot \mathbf{v}| = |\mathbf{0} \cdot \mathbf{v}| = 0$
 - ▶ So, both sides are zero and the inequality is valid.

Continued

- ► (*Case 2.*): Assume $\mathbf{u} \neq \mathbf{0}$. So, $\mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2 > 0$. Then
 - ightharpoonup Let t be any real number (variable) . We have

$$(t\mathbf{u}+\mathbf{v})\cdot(t\mathbf{u}+\mathbf{v})=\|(t\mathbf{u}+\mathbf{v})\|^2\geq 0.$$

Expanding:

$$t^2(\mathbf{u}\cdot\mathbf{u})+2t(\mathbf{u}\cdot\mathbf{v})+(\mathbf{v}\cdot\mathbf{v})\geq 0.$$

Write

$$a = \mathbf{u} \cdot \mathbf{u} = \|\mathbf{u}\|^2 > 0, \quad b = 2(\mathbf{u} \cdot \mathbf{v}), \quad c = (\mathbf{v} \cdot \mathbf{v}).$$

► The above inequality can be written as

$$f(t) = at^2 + bt + c \ge 0$$
 for all t .

Continued

- From the graph of y = f(t), we see that, f(t) = 0 either has no real root (in the case $b^2 4ac < 0$) or has a single repeated root (in the case $b^2 4ac = 0$).
 - ► So,

$$b^2 - 4ac \le 0$$
 or $b^2 \le 4ac$.

► This means

$$4(\mathbf{u} \cdot \mathbf{v})^2 \le 4(\mathbf{u} \cdot \mathbf{u})(\mathbf{v} \cdot \mathbf{v}) = 4 \|\mathbf{u}\|^2 \|\mathbf{v}\|^2.$$

► Taking square root, we have

$$|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$$
.

The proof is complete.

Definition: Angle Between Two Vectors

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are two nonzero vectors.

- ► Cauchy-Swartz Inequality ensures $-1 \le \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \le 1$. So, the following definition makes sense.
- ▶ Definition. The angle θ between $\mathbf{u}, \mathbf{v} \in V$ is defined by the equation:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \qquad 0 \le \theta \le \pi.$$

Definition We say that they are orthogonal, if $\mathbf{u} \cdot \mathbf{v} = 0$.

Theorem 6.1.5: Trianguler Inequality

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are two vectors. Then

$$\|\mathbf{u} + \mathbf{v}\| \leq \|\mathbf{u}\| + \|\mathbf{v}\|$$
.

Proof. First.

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v}$$

= $\|\mathbf{u}\|^2 + 2(\mathbf{u} \cdot \mathbf{v}) + \|\mathbf{v}\|^2 < \|\mathbf{u}\|^2 + 2|\mathbf{u} \cdot \mathbf{v}| + \|\mathbf{v}\|^2$.

By Cauchy-Schwartz Inequality $|\mathbf{u} \cdot \mathbf{v}| \leq ||\mathbf{u}|| ||\mathbf{v}||$. So,

$$\| \mathbf{u} + \mathbf{v} \|^2 \le \| \mathbf{u} \|^2 + 2 \| \mathbf{u} \| \| \mathbf{v} \| + \| \mathbf{v} \|^2 = (\| \mathbf{u} \| + \| \mathbf{v} \|)^2$$

The theorem is established by taking square root.

Theorem 6.1.6: Pythagorean

Suppose $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are two orthogonal vectors. Then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

Proof.

$$\|\mathbf{u} + \mathbf{v}\|^2 = (\mathbf{u} + \mathbf{v}) \cdot (\mathbf{u} + \mathbf{v}) = \mathbf{u} \cdot \mathbf{u} + 2(\mathbf{u} \cdot \mathbf{v}) + \mathbf{v} \cdot \mathbf{v} = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$
.

The proof is complete.

Let
$$\mathbf{u} = (0, 1, -1, 1, -1)$$
 and $\mathbf{v} = (\sqrt{5}, 1, -3, 3, -1)$.

 $(1) \text{ Find } \mathbf{u} \cdot \mathbf{v}.$

Solution: We have

$$\mathbf{u} \cdot \mathbf{v} = (0, 1, -1, 1, -1) \cdot (\sqrt{5}, 1, -3, 3, -1)$$

= 0 + 1 + 3 + 3 + 1 = 8.

 \triangleright (2) Compute $\mathbf{u} \cdot \mathbf{u}$.

Solution: We have

$$\mathbf{u} \cdot \mathbf{u} = (0, 1, -1, 1, -1) \cdot (0, 1, -1, 1, -1) = 4$$

Continued

(3) Compute $\|\mathbf{u}\|^2$. Solution: From (2), we have

$$\parallel \mathbf{u} \parallel^2 = \mathbf{u} \cdot \mathbf{u} = 4.$$

(4) Compute $(\mathbf{u} \cdot \mathbf{v})\mathbf{v}$. **Solution:** From (1), we have

$$(\mathbf{u}\cdot\mathbf{v})\mathbf{v} = 4\mathbf{v} = 4(\sqrt{5}, 1, -3, 3, -1) = (4\sqrt{5}, 4, -12, 12, -4).$$

Let \mathbf{u}, \mathbf{v} be two vectors in \mathbb{R}^n . It is given,

$$\mathbf{u} \cdot \mathbf{u} = 9$$
, $\mathbf{u} \cdot \mathbf{v} = -7$, $\mathbf{v} \cdot \mathbf{v} = 16$.

Find
$$(3\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - 3\mathbf{v})$$
.

Solution: We have

$$(3\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - 3\mathbf{v}) = 3\mathbf{u} \cdot \mathbf{u} - 10\mathbf{u} \cdot \mathbf{v} + 3\mathbf{v} \cdot \mathbf{v} = 3*9 - 10*(-7) + 3*16 = 5$$

Let $\mathbf{u} = (1, -\sqrt{2}, 1)$ and $\mathbf{v} = (2\sqrt{2}, 3, -2\sqrt{2})$. Verify Cauchy-Schwartz inequality.

Solution: We have

$$\|\mathbf{u}\| = \sqrt{1^2 + (-\sqrt{2})^2 + 1^2} = 2$$
 and

$$\|\mathbf{v}\| = \sqrt{(2\sqrt{2})^2 + 3^2 + (-2\sqrt{2})^2} = 5.$$

Also
$$\mathbf{u} \cdot \mathbf{v} = 1 * 2\sqrt{2} + (-\sqrt{2}) * (3), +1 * (-2\sqrt{2}) = -3\sqrt{2}.$$

Therefore, it is verified that

$$|\mathbf{u} \cdot \mathbf{v}| = |3\sqrt{3}| = 3\sqrt{2} \le 2 * 5 = ||\mathbf{u}|| \, ||\mathbf{v}||.$$

Let $\mathbf{u} = (1, -\sqrt{2}, 1)$ and $\mathbf{v} = (2\sqrt{2}, 0, -2\sqrt{2})$.

Find the angle θ between them.

Solution: The **angle** θ between **u** and **v** is defined by:

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\parallel \mathbf{u} \parallel \parallel \mathbf{v} \parallel} \qquad 0 \le \theta \le \pi.$$

We have

$$\|\mathbf{u}\| = \sqrt{1^2 + (-\sqrt{2})^2 + 1^2} = 2$$
 and
$$\|\mathbf{v}\| = \sqrt{8 + 0 + 8} = 4$$

Continued

Also

$$\mathbf{u} \cdot \mathbf{v} = 1 * \sqrt{2} + (-\sqrt{2} * 0 + 1 * (-2\sqrt{2}) = 0.$$

► So,

$$\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\parallel \mathbf{u} \parallel \parallel \mathbf{v} \parallel} = 0.$$

► Therefore,

$$\theta = \pi/2$$
.

Let
$$\mathbf{u} = (1, -3, -2, -7)$$
.

Find all vectors that are orthogonal to \mathbf{u} .

Solution: Suppose $\mathbf{v} = (x_1, x_2, x_3, x_4)$ be orthogonal to \mathbf{u} . By definition, it means,

$$\mathbf{u} \cdot \mathbf{v} = x_1 - 3x_2 - x_3 - 7x_4 = 0$$

A parametric solution to this system is

$$x_2 = s$$
, $x_3 = t$, $x_4 = u$, $x_1 = 3s + 2t + 7u$

So, the set of vectors orthogonal to \mathbf{u} , is given by

$$\{\mathbf{v} = (3s + 2t + 7u, s, t, u) : s, t, u \in \mathbb{R}\}$$

Let $\mathbf{u} = (\pi, 7, \pi)$ and $\mathbf{v} = (\sqrt{3}, 0, -\sqrt{3})$

Determine, if \mathbf{u}, \mathbf{v} are orthogonal to each other or not?

Solution: We need to check, if $\mathbf{u} \cdot \mathbf{v} = 0$ or not. We have

$$\mathbf{u} \cdot \mathbf{v} = \pi * (\sqrt{3}) + 7 * 0 + \pi * (-\sqrt{3}) = 0$$

So, \mathbf{u} , \mathbf{v} are orthogonal to each other.

Let $\mathbf{u} = (\pi, 7, \pi)$ and $\mathbf{v} = (\sqrt{3}, 1, -\sqrt{3})$.

Determine if are \mathbf{u}, \mathbf{v} orthogonal to each other or not?

Solution: We need to check, if $\mathbf{u} \cdot \mathbf{v} = 0$ or not. We have

$$\mathbf{u} \cdot \mathbf{v} = \pi * (\sqrt{3}) + 7 * 1 + \pi * (-\sqrt{3}) = 7 \neq 0.$$

So, \mathbf{u}, \mathbf{v} are not orthogonal to each other.

Let $\mathbf{u} = (\sqrt{3}, \sqrt{3}, \sqrt{3})$, $\mathbf{v} = (-\sqrt{3}, -\sqrt{3}, -2\sqrt{3})$. Verify, triangle Inequality. **Solution:** We have

$$\|\mathbf{u}\| = \sqrt{(\sqrt{3})^2 + (\sqrt{3})^2 + (\sqrt{3})^2} = 3,$$

$$\|\mathbf{v}\| = \sqrt{(\sqrt{3})^2 + (-\sqrt{3})^2 + (-2\sqrt{3})^2} = 3\sqrt{2}$$

$$\|\mathbf{u} + \mathbf{v}\| = \left\| (0, 0, -\sqrt{3}) \right\| = \sqrt{0^2 + 0^2 + (-\sqrt{3})^2} = \sqrt{3}.$$
To Check:
$$\|\mathbf{u} + \mathbf{v}\|^2 = 3 < \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2 = 9 + 18.$$

So, the triangle inequality is verified.

Let $\mathbf{u} = (1, -1)$, $\mathbf{v} = (2, 2)$.

Verify Pythagorean Theorem.

Solution:

We have $\mathbf{u} \cdot \mathbf{v} = 1 * 2 - 1 * 2 = 0$. So, \mathbf{u}, \mathbf{v} are orthogonal to each other and Pythagorean Theorem must hold.

$$\parallel \mathbf{u} \parallel = \sqrt{1^2 + (-1)^2} = \sqrt{2}, \quad \parallel \mathbf{v} \parallel = \sqrt{2^2 + 2^2} = 2\sqrt{2}$$

$$\parallel \mathbf{u} + \mathbf{v} \parallel = \parallel (3, 1) \parallel = \sqrt{3^2 + 2} = \sqrt{10}.$$

► We need to check.

$$\| \mathbf{u} + \mathbf{v} \|^2 = 10 = \| \mathbf{u} \|^2 + \| \mathbf{v} \|^2 = 2 + 8$$
 So, it is verified

Let $\mathbf{u} = (a, b)$, $\mathbf{v} = (b, -a)$. Verify Pythagorean Theorem. **Solution:**

We have $\mathbf{u} \cdot \mathbf{v} = ab - ba = 0$. So, \mathbf{u}, \mathbf{v} are orthogonal to each other and Pythagorean Theorem must hold.

$$\| \mathbf{u} \| = \sqrt{a^2 + b^2}, \quad \| \mathbf{v} \| = \sqrt{b^2 + a^2}$$

$$\| \mathbf{u} + \mathbf{v} \| = \| (a + b, b - a) \|$$

$$= \sqrt{(a + b)^2 + (b - a)^2} = \sqrt{2(a^2 + b^2)}$$

Continued

▶ We need to check,

$$\parallel \mathbf{u} + \mathbf{v} \parallel^2 = 2(a^2 + b^2) = \parallel \mathbf{u} \parallel^2 + \parallel \mathbf{v} \parallel^2 = (a^2 + b^2) + (b^2 + a^2)$$

► So, the Pythagorean Theorem is verified.