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Goals

We imitate the concept of length and angle
between two vectors in R2,R3 to define
the same in the n−space Rn. Main topics are:

▶ Length of vectors in Rn.

▶ Dot product of vectors in Rn

(It comes from angles between two vectors).

▶ Cauchy Swartz Inequality in Rn.

▶ Triangular Inequality in Rn, like that of triangles.
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▶ We discussed, two parallel arrows, with equal length,
represented the Same Vector v.

▶ In particular, there is one arrow,
representing v, starting at the origin.
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Continued

▶ Such arrows, starting at the origin, are identified with
points (x , y) in R2. So, we write v = (v1, v2).

▶ The length of the vector v = (v1, v2) is given by

∥v∥ =
√
v 2
1 + v 2

2 .

▶ Also, the angle θ between two such vectors
v = (v1, v2) and u = (u1, u2) is given by

cos θ =
v1u1 + v2u2
∥v∥ ∥u∥

▶ Subsequently, we imitate these two formulas.
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Length on Rn

Definition. Let v = (v1, v2, . . . , vn) be a vector in Rn.

▶ The length or magnitude or norm of v is defined as

∥v∥ =
√

v 2
1 + v 2

2 + · · ·+ v 2
n .

▶ So, ∥v∥ = 0 ⇐⇒ v = 0.

▶ We say v is a unit vector if ∥v∥ = 1.
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Theorem 6.1.1: Length in Rn

Let v = (v1, v2, . . . , vn) be a vector in Rn and c ∈ R be a
scalar. Then ∥cv∥ = |c | ∥v∥.
Proof.

▶ We have cv = (cv1, cv2, . . . , cvn).

▶ Therefore, ∥cv∥ =√
(cv1)2 + (cv2)2 + · · ·+ (cvn)2

=
√

c2 (v 2
1 + v 2

2 + · · ·+ v 2
n ) = |c | ∥v∥ .

The proof is complete.
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Theorem 6.1.2: Length in Rn

Let v = (v1, v2, . . . , vn) be a non-zero vector in Rn. Then

u =
v

∥ v ∥
has length 1.

We say, u is the unit vector in the direction of v.
Proof. (First, note that the statement of the theorem would
not make sense, if v = 0.) Now,

∥u∥ =

∥∥∥∥ 1

∥v∥
v

∥∥∥∥ =

∣∣∣∣ 1

∥v∥

∣∣∣∣ ∥v∥ = 1.

The proof is complete.

Satya Mandal Chapter 6 Inner Product Spaces §6.1 Length and Dot Product in Rn



Preview
Length and Angle

Problems
Dot Product and Angles between two vectors

Angle Between Two Vectors
Problems

Comments

▶ Example. The standard basis vectors e1 = (1, 0, 0),
e2 = (0, 1, 0), e2 = (0, 0, 1) ∈ R3 are unit vectors in R3.

▶ Example. Similarly, recall the standard basis of Rn
e1 = (1, 0, 0, . . . , 0)
e2 = (0, 1, 0, . . . , 0)
e3 = (0, 0, 1, . . . , 0)

· · ·
en = (0, 0, 0, . . . , 1)

(1)

Here, each ei is a unit vectors in Rn.
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Continued: Direction

▶ For a nonzero vector v and scalar c > 0
cv points to the same direction as v and
−cv points to direction opposite to v.

Satya Mandal Chapter 6 Inner Product Spaces §6.1 Length and Dot Product in Rn



Preview
Length and Angle

Problems
Dot Product and Angles between two vectors

Angle Between Two Vectors
Problems

Distance

Let u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) be two vectors in
Rn. Then the distance between u and v is defined as

d(u, v) = ∥u− v∥ =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2.

It is easy to see:

1. d(u, v) ≥ 0.

2. d(u, v) = d(v,u).

3. d(u, v) = 0 if and only if u = v.
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Example 6.1.1

Let u = (1, 2, 2), v = (−3, 1,−2).

1. Compute ∥ u ∥, ∥ v ∥, ∥ u+ v ∥. Solution:

∥ u ∥=
√
12 + 22 + 22 =

√
9 = 3.

∥ v ∥=
√

(−3)2 + 12 + (−2)2 =
√
14.

∥ u+ v ∥=
√

(1− 3)+(2 + 1)2 + (2− 2)2 =
√
13.

2. Compute distance d(u, v). Solution:

d(u, v) =
√
(1 + 3)2 + (2− 1)2 + (2 + 2)2 =

√
33

Satya Mandal Chapter 6 Inner Product Spaces §6.1 Length and Dot Product in Rn



Preview
Length and Angle

Problems
Dot Product and Angles between two vectors

Angle Between Two Vectors
Problems

Example 6.1.2

Let u = (−1,
√
10, 3, 4).

1. Compute the unit vector in the direction of u. Solution:

First, ∥ u ∥=
√
(−1)2 + (

√
10)2 + 32 + 42 = 6. The unit

vector in the direction of u is

e =
u

∥ u ∥
=

(−1,
√
10, 3, 4)

6
=

(
−1

6
,

√
10

6
,
3

6
,
4

6

)
.

2. Compute the unit vector in the direction opposite of u.

Solution: Answer is −e =
(

1
6
, −

√
10

6
, −3

6
, −4

6

)
.
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Example 6.1.3

Let u = (cos θ, sin θ) ∈ R2, where −π ≤ θ ≤ π.
(1) Compute the length of u,
(2) compute the vector v in the direction of u and ∥ v ∥= 4,
(3) compute the vector w in the direction of opposite to u
and same length.

Solution: (1) We have ∥ u ∥=
√

cos2 θ + sin2 θ = 1
(2) Length of v is four times that of u, and
they have same direction. So, v = 4u = 4(cos θ, sin θ).
(3) w = −u = −(cos θ, sin θ).
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Example 6.1.4

Let v be a vector in the same direction as

u = (−1, π, 1) and ∥v∥ = 4.

Compute v.
Solution: Write v = cu with c > 0. Given ∥v∥ = 4 So,

4= ∥v∥ = ∥cu∥ = |c | ∥u∥ = c
√

(−1)2 + π2 + 12 = c
√
π2 + 2

So, c = 4√
π2+2

and v = cu = 4√
π2+2

(−1, π, 1) .
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Example 6.1.5

Let v = (−1, 3,
√
2, π).

▶ (1) Find u such that u has same direction as v
and one-half its length.
Solution: In general,

∥ cv ∥= |c | ∥ v ∥ .

So, in this case,

u =
1

2
v =

1

2

(
−1, 3,

√
2, π
)
=

(
−1

2
,
3

2
,
1√
2
,
π

2

)
.
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Continued

▶ (2) Find u such that u has opposite direction as v
and one-fourth its length.
Solution: Since it has opposite direction

u = −1

4
v = −1

4

(
−1, 3,

√
2, π
)
=

(
1

4
,−3

4
,− 1

2
√
2
,−π

4

)
▶ (3) Find u such that u has opposite direction as v

and twice its length.
Solution: Since it has opposite direction

u = −2v = −2
(
−1, 3,

√
2, π
)
= (2,−6,−2

√
2,−2π).
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Example 6.1.6

Find the distance between

u = (−1, 2, 3, π) and v = (1, 0, 5, π + 2).

Solution: Distance

d(u, v) =∥ u− v ∥=∥ (−2, 2,−2,−2) ∥

=
√
−(2)2 + 22 + (−2)2 + (−2)2 = 4.
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Definition: Dot Product

Definition. Let

u = (u1, u2, . . . , un), v = (v1, v2, . . . , vn) ∈ Rn

be two vectors in Rn. The dot product of u and v is defined as

u · v = u1v1 + u2v2 + · · ·+ unvn.
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Theorem 6.1.3

Suppose u, v,w ∈ Rn are three vectors and c is a scalar. Then

1. (Commutativity): u · v = v · u.
2. (Distributivity): u · (v +w) = u · v + u ·w.

3. (Associativity): c(u · v) = (cu) · v = u · (cv).
4. (dot product and Norm): v · v =∥ v ∥2 .
5. We have v · v ≥ 0 and v · v ⇐⇒ v = 0.

Proof. Follows from definition of dot product.

Remark. The vector space Rn together with
(1) length, (2) dot product is called the Euclidean n−Space.
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Theorem 6.1.4: Cauchy-Schwartz Inequality

Suppose u, v ∈ Rn are two vectors. Then

|u · v| ≤ ∥u∥ ∥v∥ .

Proof.
▶ (Case 1.): Assume u = 0.

▶ Then ∥u∥ = 0 and the Right Hand Side is zero.
▶ Also, the Left Hand Side = |u · v| = |0 · v| = 0
▶ So, both sides are zero and the inequality is valid.
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Continued

▶ (Case 2.): Assume u ̸= 0. So, u · u = ∥u∥2 > 0. Then
▶ Let t be any real number (variable) . We have

(tu+ v) · (tu+ v) = ∥(tu+ v)∥2 ≥ 0.

▶ Expanding:

t2(u · u) + 2t(u · v) + (v · v) ≥ 0.

▶ Write

a = u · u = ∥u∥2 > 0, b = 2(u · v), c = (v · v).

▶ The above inequality can be written as

f (t) = at2 + bt + c ≥ 0 for all t.
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Continued

▶ ▶ From the graph of y = f (t), we see that, f (t) = 0
either has no real root (in the case b2 − 4ac < 0)
or has a single repeated root (in the case b2 − 4ac = 0).

▶ So,
b2 − 4ac ≤ 0 or b2 ≤ 4ac.

▶ This means

4(u · v)2 ≤ 4(u · u)(v · v) = 4 ∥u∥2 ∥v∥2 .

▶ Taking square root, we have

| u · v | ≤ ∥u∥ ∥v∥ .

The proof is complete.
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Definition: Angle Between Two Vectors

Suppose u, v ∈ Rn are two nonzero vectors.

▶ Cauchy-Swartz Inequality ensures −1 ≤ u·v
∥u∥∥v∥ ≤ 1.

So, the following definition makes sense.

▶ Definition. The angle θ between u, v ∈ V is defined by
the equation:

cos θ =
u · v

∥u∥ ∥v∥
0 ≤ θ ≤ π.

▶ Definition We say that they are orthogonal, if u · v = 0.
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Theorem 6.1.5: Trianguler Inequality

Suppose u, v ∈ Rn are two vectors. Then

∥u+ v∥ ≤ ∥u∥+ ∥v∥ .

Proof. First,

∥u+ v∥2 = (u+ v) · (u+ v) = u · u+ 2(u · v) + v · v

= ∥u∥2 + 2(u · v) + ∥v∥2 ≤ ∥u∥2 + 2 |u · v|+ ∥v∥2 .
By Cauchy-Schwartz Inequality | u · v | ≤ ∥ u ∥∥ v ∥ . So,

∥ u+ v ∥2≤∥ u ∥2 +2 ∥ u ∥∥ v ∥ + ∥ v ∥2= (∥ u ∥ + ∥ v ∥)2

The theorem is established by taking square root.
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Theorem 6.1.6: Pythagorean

Suppose u, v ∈ Rn are two orthogonal vectors. Then

∥u+ v∥2 = ∥u∥2 + ∥v∥2 .

Proof.

∥u+ v∥2 = (u+v)·(u+v) = u·u+2(u·v)+v·v = ∥u∥2+∥v∥2 .

The proof is complete.
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Example 6.1.7

Let u = (0, 1,−1, 1,−1) and v = (
√
5, 1,−3, 3,−1).

▶ (1) Find u · v.
Solution: We have

u · v = (0, 1,−1, 1,−1) · (
√
5, 1,−3, 3,−1)

= 0 + 1 + 3 + 3 + 1 = 8.

▶ (2) Compute u · u.
Solution: We have

u · u = (0, 1,−1, 1,−1) · (0, 1,−1, 1,−1) = 4
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▶ (3) Compute ∥ u ∥2 .
Solution: From (2), we have

∥ u ∥2= u · u = 4.

▶ (4) Compute (u · v)v.
Solution: From (1), we have

(u·v)v = 4v = 4(
√
5, 1,−3, 3,−1) = (4

√
5, 4,−12, 12,−4).
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Example 6.1.7

Let u, v be two vectors in Rn. It is given,

u · u = 9, u · v = −7, v · v = 16.

Find (3u− v) · (u− 3v).

Solution: We have

(3u−v)·(u−3v) = 3u·u−10u·v+3v·v = 3∗9−10∗(−7)+3∗16 = 5
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Example 6.1.8

Let u = (1,−
√
2, 1) and v = (2

√
2, 3,−2

√
2).

Verify Cauchy-Schwartz inequality.

Solution: We have

∥u∥ =

√
12 + (−

√
2)2 + 12 = 2 and

∥v∥ =

√
(2
√
2)2 + 32 + (−2

√
2)2 = 5.

Also u · v = 1 ∗ 2
√
2 + (−

√
2) ∗ (3),+1 ∗ (−2

√
2) = −3

√
2.

Therefore, it is verified that

|u · v| = |3
√
3| = 3

√
2 ≤ 2 ∗ 5 = ∥u∥ ∥v∥ .
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Example 6.1.9

Let u = (1,−
√
2, 1) and v = (2

√
2, 0,−2

√
2).

Find the angle θ between them.
Solution: The angle θ between u and v is defined by:

cos θ =
u · v

∥ u ∥∥ v ∥
0 ≤ θ ≤ π.

▶ We have

∥u∥ =

√
12 + (−

√
2)2 + 12 = 2 and

∥ v ∥=
√
8 + 0 + 8 = 4
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Continued

▶ Also

u · v = 1 ∗
√
2 + (−

√
2 ∗ 0 + 1 ∗ (−2

√
2) = 0.

▶ So,

cos θ =
u · v

∥ u ∥∥ v ∥
= 0.

▶ Therefore,
θ = π/2.
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Example 6.1.10

Let u = (1,−3,−2,−7).
Find all vectors that are orthogonal to u.

Solution: Suppose v = (x1, x2, x3, x4) be orthogonal to u.
By definition, it means,

u · v = x1 − 3x2 − x3 − 7x4 = 0

A parametric solution to this system is

x2 = s, x3 = t, x4 = u, x1 = 3s + 2t + 7u

So, the set of vectors orthogonal to u, is given by

{v = (3s + 2t + 7u, s, t, u) : s, t, u ∈ R}
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Example 6.1.11

Let u = (π, 7, π) and v = (
√
3, 0,−

√
3)

Determine, if u, v are orthogonal to each other or not?

Solution: We need to check, if u · v = 0 or not. We have

u · v = π ∗ (
√
3) + 7 ∗ 0 + π ∗ (−

√
3) = 0

So, u, v are orthogonal to each other.
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Example 6.1.12

Let u = (π, 7, π) and v = (
√
3, 1,−

√
3).

Determine if are u, v orthogonal to each other or not?

Solution: We need to check, if u · v = 0 or not. We have

u · v = π ∗ (
√
3) + 7 ∗ 1 + π ∗ (−

√
3) = 7 ̸= 0.

So, u, v are not orthogonal to each other.
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Example 6.1.13

Let u = (
√
3,
√
3,
√
3), v = (−

√
3,−

√
3,−2

√
3).

Verify, triangle Inequality. Solution: We have

∥u∥ =

√
(
√
3)2 + (

√
3)2 + (

√
3)2 = 3,

∥v∥ =

√
(
√
3)2 + (−

√
3)2 + (−2

√
3)2 = 3

√
2

∥u+ v∥ =
∥∥∥(0, 0,−√

3)
∥∥∥ =

√
02 + 02 + (−

√
3)2 =

√
3.

To Check : ∥u+ v∥2 = 3 ≤ ∥u∥2 + ∥v∥2 = 9 + 18.

So, the triangle inequality is verified.
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Example 6.1.14

Let u = (1,−1), v = (2, 2).
Verify Pythagorean Theorem.
Solution:
▶ We have u · v = 1 ∗ 2− 1 ∗ 2 = 0. So, u, v are orthogonal

to each other and Pythagorean Theorem must hold.
▶

∥ u ∥=
√
12 + (−1)2 =

√
2, ∥ v ∥=

√
22 + 22 = 2

√
2

∥ u+ v ∥=∥ (3, 1) ∥=
√
32+2 =

√
10.

▶ We need to check,

∥ u+v ∥2= 10 =∥ u ∥2 + ∥ v ∥2= 2+8 So, it is verified
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Example 6.1.15

Let u = (a, b), v = (b,−a). Verify Pythagorean Theorem.
Solution:

▶ We have u · v = ab − ba = 0. So, u, v are orthogonal to
each other and Pythagorean Theorem must hold.

▶
∥ u ∥=

√
a2 + b2, ∥ v ∥=

√
b2 + a2

∥ u+ v ∥=∥ (a + b, b − a) ∥

=
√
(a + b)2 + (b − a)2 =

√
2(a2 + b2)
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Continued

▶ We need to check,

∥ u+v ∥2= 2(a2+b2) =∥ u ∥2 + ∥ v ∥2= (a2+b2)+(b2+a2)

▶ So, the Pythagorean Theorem is verified.
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