Preview
Row and Column Spaces
Rank of a Matrix
The Null Space
Solutions of Linear Systems
Summary Equivalent Conditions
Examples and Solutions

Chapter 4 Vector Spaces §4.6 Rank of a Matrix II

Satya Mandal

U. Kansas **Arrowtic** K-**Theory** Fall 2025

Goals

Suppose A is a $m \times n$ matrix

- ► The row space and column space of A will be defined, as a vector space.
- rank(A) will be re-defined. This will agree
 with rank(A) defined in the the chapter on determinants.
- ► Then Null space N(A) of A will be defined, as a vector space.
- ▶ It will be proved rank(A) + dim(N(A)) = n.

Row and Column vectors

Suppose A is a $m \times n$ matrix.

- ► The n-tuples corrospoding to the rows of A are called row vectors of A. So, the row vectors of A are in \mathbb{R}^n .
- ▶ The m-tuples corrospeding to the columns of A are called columns vectors of A. So, the column vectors of A are in \mathbb{R}^m .

Row and Column vectors

Suppose

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} Then \begin{pmatrix} a_{11}, & a_{12}, & \cdots, & a_{1n} \\ (a_{21}, & a_{22}, & \cdots, & a_{2n}) \\ & & & & & & & & \\ (a_{m1}, & a_{m2}, & \cdots, & a_{mn}) \end{pmatrix}$$

The column vectors of A are

$$\begin{pmatrix} a_{11} \\ a_{21} \\ \cdots \\ a_{m1} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \cdots \\ a_{m2} \end{pmatrix}, \cdots \begin{pmatrix} a_{1n} \\ a_{2n} \\ \cdots \\ a_{mn} \end{pmatrix}$$

Row and Column Spaces

Suppose A is a $m \times n$ matrix, as above.

- ▶ The row space of A is defined to be the subspace of \mathbb{R}^n spanned by row vectors of A. (In this case, think of vectors in \mathbb{R}^n , as rows.)
- ► The column space of A is defined to be the subspace of \mathbb{R}^n spanned by column vectors of A. (In this case, think of vectors in \mathbb{R}^n , as columns.)

So,

$$ightharpoonup row - space(A) =$$

$$span \left(egin{array}{cccc} (a_{11}, & a_{12}, & \cdots, & a_{1n}) \\ (a_{21}, & a_{22}, & \cdots, & a_{2n}) \\ & & \cdots & \\ (a_{m1}, & a_{12}, & \cdots, & a_{mn}) \end{array}
ight) \subseteq \mathbb{R}^n.$$

ightharpoonup column — space(A) =

$$span\left(\left(\begin{array}{c} a_{11} \\ a_{21} \\ \cdots \\ a_{m1} \end{array}\right), \left(\begin{array}{c} a_{12} \\ a_{22} \\ \cdots \\ a_{m2} \end{array}\right), \cdots \left(\begin{array}{c} a_{1n} \\ a_{2n} \\ \cdots \\ a_{mn} \end{array}\right) \subseteq \mathbb{R}^m.$$

Some Properties: Theorem 4.6.1

Theorem 4.6.1 Suppose A, B are two $m \times n$ matrices.

- If A and B are row equivalent then, rowSpace(A) = rowSpace(B).
- If A and B are column equivalent then, columnSpace(A) = columnSpace(B).

Remark. The properties of row-spaces and column-spaces would be analogous.

Proof.To prove the first statement, assume A and B are row equivalent. We can write $B = E_k E_{k-1} \cdots E_2 E_1 A$, where E_1, \ldots, E_k are elementary row matrices. Inductively, we prove

$$rowspace(A) = rowspace(E_1A) = rowspace(E_2E_1A) = \cdots$$

= $rowspace(E_{k-1} \cdots E_2E_1A) = rowspace(B)$.

So, it is enough to prove rowspace(A) = rowspace(EA), where E is an elementary row matrix.

- ▶ If *E* switches two rows of I_m , *EA* switches two rows of *A*. Hence rowspace(A) = rowspace(EA).
- If E is obtained by multiplying a row of I_m by c ≠ 0, EA is obtained from multiplying the same row by c. Hence rowspace(EA) ⊆ rowspace(A). Now, A is obtained, from EA by multiplying the same row of EA by ½. So, rowspace(A) ⊆ rowspace(EA), and rowspace(EA) = rowspace(A).

▶ If *E* is obtained by adding *c* times a row of I_m , then *EA* is obtained, from *A*, by adding *c* times a row of *A*, to another. So, all rows of *EA* are either same or a linear combination of rows alf *A*. So, $rowspace(EA) \subseteq rowspace(A)$. Again, process is reversible. So, $rowspace(A) \subseteq rowspace(EA)$. Therefore, rowspace(EA) = rowspace(A).

This completes the proof of the statement on row spaces.

Now, suppose B is column equivalent to A. Then B^T is row equivalent to A^T . We have

$$Columnspace(A) = rowspace(A^T) = rowspace(B^T)$$

= $Columnspace(B)$

This completes the proof of the statement on column spaces.

Preview
Row and Column Spaces
Rank of a Matrix
The Null Space
Solutions of Linear Systems
Summary Equivalent Conditions
Examples and Solutions

Basis of Row Space: Theorem 4.6.2

(Basis of Row Space) Suppose A, B are two $m \times n$ matrices. If B is in row-echelon form then the non-zero rows of B forms a basis of row - space(A) (which is same as row - space(B)).

Proof. Note that the nonzero rows of a matrix in Echelon form are linearly independent. Now, the theorem follows from Theorem 4.6.1.

Preview
Row and Column Spaces
Rank of a Matrix
The Null Space
Solutions of Linear Systems
Summary Equivalent Conditions
Examples and Solutions

Theorem 4.6.3

Let A be $m \times n$ matrix. Then

$$dim(rowSpace(A)) = dim(columnSpace(A)).$$

Proof. Write

$$A = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \dots \\ \mathbf{r}_m \end{pmatrix} = \begin{pmatrix} \mathbf{c}_1 & \mathbf{c}_2 & \cdots & \mathbf{c}_n \end{pmatrix}$$

where $\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{r}_m$ are the rows of A and $\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n$ are the columns of A

```
Assume dim(rowspace(A)) = k.
Let \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k be a basis of rowspace(A)
(and think of \mathbf{u}_i as row matrices). We can write
\begin{cases} \mathbf{r}_{1} = \alpha_{11}\mathbf{u}_{1} + \alpha_{12}\mathbf{u}_{2} + \dots + \alpha_{1k}\mathbf{u}_{k} \\ \mathbf{r}_{2} = \alpha_{21}\mathbf{u}_{1} + \alpha_{22}\mathbf{u}_{2} + \dots + \alpha_{2k}\mathbf{u}_{k} \\ \dots \\ \mathbf{r}_{m} = \alpha_{m1}\mathbf{u}_{1} + \alpha_{m2}\mathbf{u}_{2} + \dots + \alpha_{mk}\mathbf{u}_{k} \end{cases}
```

where $\alpha_{ii} \in \mathbb{R}$.

We rewrite it in matrix form:

$$A = \begin{pmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \\ \cdots \\ \mathbf{r}_m \end{pmatrix} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1k} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2k} \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mk} \end{pmatrix} \begin{pmatrix} \mathbf{u}_1 \\ \mathbf{u}_2 \\ \cdots \\ \mathbf{u}_k \end{pmatrix}$$

Let me caution you that, on right hand side, we are multiplying a matrix with real number entries, with a matrix whose entries are row vectors. However, it works. You can accept or trust it or try to convince yourself.

Apply Transpose operation to the above equation:

$$A^{T} = \begin{pmatrix} \mathbf{u}_{1}^{T} & \mathbf{u}_{2}^{T} & \cdots & \mathbf{u}_{k}^{T} \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{m1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{1k} & \alpha_{2k} & \cdots & \alpha_{mk} \end{pmatrix}$$
(1)

We denote the rows of the matrix (α_{ij}) by $\mathbf{w}_1, \mathbf{w}_2, \cdots, \mathbf{w}_k$. So,

$$\begin{pmatrix} \alpha_{11} & \alpha_{21} & \cdots & \alpha_{m1} \\ \alpha_{12} & \alpha_{22} & \cdots & \alpha_{m2} \\ \cdots & \cdots & \cdots & \cdots \\ \alpha_{1k} & \alpha_{2k} & \cdots & \alpha_{mk} \end{pmatrix} = \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \cdots \\ \mathbf{w}_k \end{pmatrix}$$

Note, $(\mathbf{u}_1^T \ \mathbf{u}_2^T \ \cdots \ \mathbf{u}_k^T)$ is an $n \times k$ matrix. So, we write

$$\begin{pmatrix} \mathbf{u}_1^T & \mathbf{u}_2^T & \cdots & \mathbf{u}_k^T \end{pmatrix} = \begin{pmatrix} \beta_{11} & \beta_{21} & \cdots & \beta_{1k} \\ \beta_{12} & \beta_{22} & \cdots & \beta_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nk} \end{pmatrix} \text{ where } \beta_{ij} \in \mathbb{R}.$$

So, Equation 1 can be written as

$$\begin{pmatrix} \mathbf{c}_{1}^{T} \\ \mathbf{c}_{2}^{T} \\ \cdots \\ \mathbf{c}_{n}^{T} \end{pmatrix} = \begin{pmatrix} \beta_{11} & \beta_{12} & \cdots & \beta_{1k} \\ \beta_{21} & \beta_{22} & \cdots & \beta_{2k} \\ \cdots & \cdots & \cdots & \cdots \\ \beta_{n1} & \beta_{n2} & \cdots & \beta_{nk} \end{pmatrix} \begin{pmatrix} \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \cdots \\ \mathbf{w}_{k} \end{pmatrix}$$

It follows
$$\begin{cases} \mathbf{c}_1^T = \beta_{11}\mathbf{w}_1 + \beta_{12}\mathbf{w}_2 + \dots + \beta_{1k}\mathbf{w}_k \\ \mathbf{c}_2^T = \beta_{21}\mathbf{w}_1 + \beta_{22}\mathbf{w}_2 + \dots + \beta_{2k}\mathbf{w}_k \\ & \dots \\ \mathbf{c}_n^T = \beta_{n1}\mathbf{w}_1 + \beta_{n2}\mathbf{w}_2 + \dots + \beta_{nk}\mathbf{w}_k \end{cases}$$

Hence
$$\begin{cases} \mathbf{c}_1 = \beta_{11} \mathbf{w}_1^T + \beta_{12} \mathbf{w}_2^T + \dots + \beta_{1k} \mathbf{w}_k^T \\ \mathbf{c}_2 = \beta_{21} \mathbf{w}_1^T + \beta_{22} \mathbf{w}_2^T + \dots + \beta_{2k} \mathbf{w}_k^T \\ & \dots \\ \mathbf{c}_n = \beta_{n1} \mathbf{w}_1^T + \beta_{n2} \mathbf{w}_2^T + \dots + \beta_{nk} \mathbf{w}_k^T \end{cases}$$

So,

$$ColumnSpan(A) = span\{\mathbf{c}_1, \mathbf{c}_2, \dots, \mathbf{c}_n\} \subseteq span\{\mathbf{w}_1^T, \mathbf{w}_2^T, \dots, \mathbf{w}_k^T\}$$

Therefore, by Corollary 4.5.7

$$\dim(ColumnSpan(A)) \le k = \dim(rowSpace(A))$$

Now,

$$\dim(rowspace(A)) = \dim(ColumnSpace(A^T)) \le$$

$$\dim(rowSpace(A^T)) = \dim(ColumnSpace(A))$$

Hence

$$dim(ColumnSpan(A)) = k = dim(rowSpace(A))$$

The proof is complete.

Rank of a Matrix:

Definition. Let A be $m \times n$ matrix. Then the rank of A (written as rank(A)) is defined to be the dimension of the row space of A (equivalently, dimension of the column space of A).

$$rank(A) := dim(rowSpace(A))$$

By Theorem 4.6.3, we also have,

$$\begin{cases} rank(A) = dim(ColumnSpace(A)) \\ rank(A^t) = rank(A) \end{cases}$$

Two Definitions of Rank

► For a matrix *A*, in chapter 3 (on Determinants), we defined

$$rank(A) = max \{k : \exists a \text{ minor M of order } k, \ni M \neq 0\}$$

Theorem. These two definitions of rank(A) coincide. You can compute rank(A), in either way.

Null Space of a Matrix

Definitions Let A be an $m \times n$ matrix.

The Null Space N(A) is defined to be the set of all the solutions of the homogeneous system of equations $A\mathbf{x} = \mathbf{0}$.

$$N(A) = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}.$$

The null space N(A) is also called the solution space of $A\mathbf{x} = \mathbf{0}$.

Theorem 4.6.4

Suppose A is am $m \times n$ matrix.

Then the null space N(A) is a subspace of \mathbb{R}^n .

Proof. By defintion $N(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}.$

Note that $\mathbf{0}$ is a solution of $A\mathbf{x} = \mathbf{0}$, $\mathbf{0} \in N(A)$

(called the trivial solution). So, N(A) is nonempty.

Now, we only need to show that N(A) is closed under addition and scalar multiplication. Suppose $\mathbf{x}, \mathbf{y} \in N(A)$ and c is a scalar. Then

$$A(\mathbf{x} + \mathbf{y}) = A\mathbf{x} + A\mathbf{y} = \mathbf{0} + \mathbf{0} = \mathbf{0}$$

So, $\mathbf{x} + \mathbf{y} \in N(A)$. So, N(A) is closed under addition. Also,

$$A(c\mathbf{x}) = cA(\mathbf{x}) = c\mathbf{0} = \mathbf{0}$$

So, $c\mathbf{x} \in N(A)$. So, N(A) is closed under scalar multiplication. Therefore N(A) is a subspace of \mathbb{R}^n .

The proof is complete.

Definition: Nullity

Let A be an $m \times n$ matrix.

Then nullity of A (written, Nullity(A)) is defined to be the dimension of the null space of A. Notationally,

$$Nullity(A) = \dim(N(A)).$$

- ▶ The right side makes sense, because N(A) is subspace.
- Now, given a matrix A, we have associated two numbers: (1) rank(A) and (2) Nullity(A).

Theorem 4.6.5

Let A be $m \times n$ matrix.

► Then

$$rank(A) + Nullity(A) = n$$
. The number of columns

- ► This means, if rank of A is r, then the dimension of the solution space of $A\mathbf{x} = \mathbf{0}$ is n r.
- Note *n* is the number of variables in the system $A\mathbf{x} = \mathbf{0}$.

Proof.

Suppose A is row equivalent to B, which is in row Echelon form. We have seem (1) rank(A) = rank(B), (2) N(A) = N(B). So, Nullity(B) = Nullity(A). So, it is enough to prove the theorem, when A is in row Echelon form. In this case,

- ightharpoonup rank(A) = r is the number of non zero rows of A.
- Inspecting the system in Echelon form, it follows $\dim(N(A)) = n r$. (We skip the details.)

Preview
Row and Column Spaces
Rank of a Matrix
The Null Space
Solutions of Linear Systems
Summary Equivalent Conditions
Examples and Solutions

Solutions of Linear Systems

Let $A\mathbf{x} = \mathbf{b}$ be a system of linear m equations, in n variables. Remarks:

- \blacktriangleright Here A is a $m \times n$ matrix.
- For a homogeneous system $A\mathbf{x} = \mathbf{0}$, set of its solutions is the null space N(A), which is a subspace of \mathbb{R}^n .
- ▶ If the system $A\mathbf{x} = \mathbf{b}$ is non-homogeneous (i.e. $\mathbf{b} \neq 0$), then the set of solutions is not a subspace of \mathbb{R}^n . This is because the zero $\mathbf{0}$ is not a solution of such a system.
- ▶ However, the solutions of a system $A\mathbf{x} = \mathbf{b}$ is related to the solutions space of he corresponding homogeneous system $A\mathbf{x} = \mathbf{0}$, the null space N(A).

Theorem 4.6.6: Solutions of Linear Systems

Let $A\mathbf{x} = \mathbf{b}$ be a system of linear m equations, in n variables. Fix a solution $\mathbf{x_p}$ of $A\mathbf{x} = \mathbf{b}$, to be called a "particular solution". Then any solution of $A\mathbf{x} = \mathbf{b}$ can be written as

$$\mathbf{x} = \mathbf{x_p} + \mathbf{x_h}$$
 $\mathbf{x_h} \in \mathcal{N}(A)$.

Proof. Suppose $A\mathbf{x} = \mathbf{b}$. Write $\mathbf{x}_h = \mathbf{x} - \mathbf{x}_p$. Then

$$A\mathbf{x}_h = A\mathbf{x} - A\mathbf{x}_p = \mathbf{b} - \mathbf{b} = \mathbf{0}$$
. So, $\mathbf{x}_h \in N(A)$, and $\mathbf{x} = \mathbf{x}_p + \mathbf{x}_h$.

This completes the proof.

Theorem 4.6.7: Consistent System

A system $A\mathbf{x} = \mathbf{b}$ is consistent, if $\mathbf{b} \in ColumnSpace(A)$. **Proof.**If the system has a solution \mathbf{x} , then \mathbf{b} is linear combination of the columns: $\mathbf{b} = x_1(First - Column) + x_2(second - Column) + \cdot + x_n(First - Column)$. The proof is complete.

A Summary

Let A be a square marix of order n. The following conditions are equivalent:

- 1. A is invertible.
- 2. $A\mathbf{x} = \mathbf{b}$ has a unique solution.
- 3. $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- 4. A is row equivalent to I_n .
- 5. $|A| \neq 0$.
- 6. rank(A) = n.
- 7. The *n* row vectors of *A* are linearly independent.
- 8. The *n* column vectors of *A* are linearly independent.

- ▶ This (the last frame) is an update of a list given in §3.3.
- Last three conditions were added to the old list.
- From definition of rank, it follows

$$(6) \Longleftrightarrow (7) \Longleftrightarrow (8).$$

Also,

$$(4) \Longleftrightarrow (7).$$

This completes the proof.

Basis of row spaces

Suppose A is an $m \times n$ matrix.

By Theorem 4.6.1, if B is in row-echelon form (or in reduced row-echelon form) and is row equivalent to A then the non-zero rows of B forms a basis of row — space(A) Remark. In fact, if B is like a row-echelon matrix, but without "leading 1", same works. We will call them essentially in row Echelon form. This sometimes help, avoiding decimals.

Example 4.6.1

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 7 & -15 \\ 2 & 6 & -8 \end{bmatrix}$$
. Find basis of the row space of A .

- 1. Find a basis of the row space of A.
- 2. Find the rank of A.

Finding Basis for the row space Finding basis of the column space Finding basis of subspaces of \mathbb{R}^n Problem on Null Spaces

Solution.

Use "ref" in TI-84 ("ref")I.

$$B = \left[\begin{array}{ccc} 1 & \frac{7}{2} & -\frac{15}{2} \\ 0 & 1 & -7 \\ 0 & 0 & 0 \end{array} \right]$$

A basis of the row pace: $S = \left\{ \left(1, \frac{7}{2}, -\frac{15}{2}\right), (0, 1, -7) \right\}$

So, rank(A) = dim(rowSpace(A)) = 2.

Example 4.6.2

Let A be as in Example 4.6.1. Now find a basis of the column space of A.

Solution. Column space of A is the row space of A^T (written as rows). We have

$$A^{T} = \left(\begin{array}{ccc} 1 & 2 & 2 \\ 2 & 7 & 6 \\ 3 & -15 & -8 \end{array}\right)$$

I want to solve it by hand, without TI-84. TI-84 quickly brings in nonterminating decimal numbers, which is inconvenient.

Continued

Solution: Subtract 2 times first row from second and three times first row from third:

$$\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 3 & 2 \\
0 & -21 & -14
\end{array}\right)$$

Now subtract 7 times second row from third:

$$\left(\begin{array}{ccc}
1 & 2 & 2 \\
0 & 3 & 2 \\
0 & 0 & 0
\end{array}\right)$$

 $\begin{pmatrix} 1 & 2 & 2 \\ 0 & 3 & 2 \\ 0 & 0 & 0 \end{pmatrix}$ This is essentially in row Echelon form.

Continued

So, a basis of $rowspace(A^T)$ is

$$S = \{(1,2,2),(0,3,2)\}$$

So, a basis of the Column Space of A is

$$\left\{ \left(\begin{array}{c} 1\\2\\2 \end{array}\right), \left(\begin{array}{c} 0\\3\\4 \end{array}\right) \right\}$$

Example 4.6.3

$$Let \quad A = \left(\begin{array}{ccccc} 8 & 0 & 4 & 6 & 2 \\ 3 & 1 & 0 & -2 & -1 \\ 9 & 2 & 4 & 4 & 0 \\ 5 & 2 & 2 & -2 & -1 \\ 3 & 0 & 0 & -2 & -1 \end{array}\right)$$

- 1. Find a basis of the row space of A
- 2. Find the rank of A.
- 3. Find the Nullity of A

Proof. We reduce A to an, essentially, row echelon form. Divide first row by two:

$$\begin{pmatrix}
4 & 0 & 2 & 3 & 1 \\
3 & 1 & 0 & -2 & -1 \\
9 & 2 & 4 & 4 & 0 \\
5 & 2 & 2 & -2 & -1 \\
3 & 0 & 0 & -2 & -1
\end{pmatrix}$$

Subtract 2 times 1^{st} row of A from 3^{rd} , the switch 1^{st} and 3^{rd} rows:

$$\begin{pmatrix} 4 & 0 & 2 & 3 & 1 \\ 3 & 1 & 0 & -2 & -1 \\ 1 & 2 & 0 & -2 & -2 \\ 5 & 2 & 2 & -2 & -1 \\ 3 & 0 & 0 & -2 & -1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 0 & -2 & -2 \\ 3 & 1 & 0 & -2 & -1 \\ 4 & 0 & 2 & 3 & 1 \\ 5 & 2 & 2 & -2 & -1 \\ 3 & 0 & 0 & -2 & -1 \end{pmatrix}$$

(1) Subtract 3 times first row from second and fifth, and 4 times first row from third and 5 time first from fourth; (2) then subtract fifth row from second:

$$\begin{pmatrix} 1 & 2 & 0 & -2 & -2 \\ 0 & -5 & 0 & 4 & 5 \\ 0 & -8 & 2 & 11 & 9 \\ 0 & -8 & 2 & 8 & 9 \\ 0 & -6 & 0 & 4 & 5 \end{pmatrix} \mapsto \begin{pmatrix} 1 & 2 & 0 & -2 & -2 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & -8 & 2 & 11 & 9 \\ 0 & -8 & 2 & 8 & 9 \\ 0 & -6 & 0 & 4 & 5 \end{pmatrix}$$

Add 8 times 2^{nd} row to 3^{rd} , 4^{th} and 6 times 2^{nd} row to 5^{th} :

$$\left(\begin{array}{cccccc}
1 & 2 & 0 & -2 & -2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 11 & 9 \\
0 & 0 & 2 & 8 & 9 \\
0 & 0 & 0 & 4 & 5
\end{array}\right)$$

Subtract 3^{rd} row from 4^{th} :

$$\left(\begin{array}{cccccc}
1 & 2 & 0 & -2 & -2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 11 & 9 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 4 & 5
\end{array}\right)$$

Add $\frac{4}{3}$ times 4^{th} row to 5^{th} :

$$\left(\begin{array}{cccccc}
1 & 2 & 0 & -2 & -2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 11 & 9 \\
0 & 0 & 0 & -3 & 0 \\
0 & 0 & 0 & 0 & 5
\end{array}\right)$$

The matrix is, essentially, in row Echelon form. So, its nonzero vectors from a basis of the rowspace(A).

So, a basis of the row space of A is:

$$S = \left\{ \begin{array}{l} (1,2,0,-2,-2), \\ (0,1,0,0,0), \\ (0,0,2,11,9), \\ (0,0,0,-3,0), \\ (0,0,0,0,5) \end{array} \right\}$$

So, (rank(A) = dim(row)

$$\begin{cases} rank(A) = dim(row - space) = 5, \\ Nullity(A) = 5 - 5 = 0 \end{cases}$$

Example 4.6.3a

We modify the above problem, to create a new problem.

Let
$$A = \begin{pmatrix} 8 & 0 & 4 & 6 & 2 \\ 3 & 1 & 0 & -2 & -1 \\ 9 & 2 & 4 & 4 & 0 \end{pmatrix}$$

- 1. Find a basis of the row space of A
- 2. Find the rank of A.
- 3. Find the Nullity of A

Proof. We reduce A to an, essentially, row echelon form. Divide first row by two:

$$\left(\begin{array}{cccccc}
4 & 0 & 2 & 3 & 1 \\
3 & 1 & 0 & -2 & -1 \\
9 & 2 & 4 & 4 & 0
\end{array}\right)$$

Subtract 2^{nd} row from 1^{st} and subtract 3 times 2^{nd} row from from third:

$$\left(\begin{array}{ccccc}
1 & -1 & 2 & 5 & 2 \\
3 & 1 & 0 & -2 & -1 \\
0 & -1 & 4 & 10 & 3
\end{array}\right)$$

Switch 2^{nd} and 3^{rd} rows:

$$\left(\begin{array}{cccccc}
1 & -1 & 2 & 5 & 2 \\
0 & -1 & 4 & 10 & 3 \\
3 & 1 & 0 & -2 & -1
\end{array}\right)$$

Subtract 3 times 1^{st} from 3^{rd} :

$$\left(\begin{array}{cccccc}
1 & -1 & 2 & 5 & 2 \\
0 & -1 & 4 & 10 & 3 \\
0 & 4 & -6 & -17 & -7
\end{array}\right)$$

Add four times 2^{nd} to 3^{rd} :

$$\left(\begin{array}{cccccc}
1 & -1 & 2 & 5 & 2 \\
0 & -1 & 4 & 10 & 3 \\
0 & 0 & 10 & -23 & 5
\end{array}\right)$$

The matrix above is, essentially, in row Echelon form. So, its nonzero vectors from a basis of the rowspace(A). So, a basis of the row space of A is:

$$S = \left\{ \begin{array}{l} (1, -1, 2, 5, 2) \\ (0, -1, 4, 10, 3) \\ (0, 0, 10, -23, 5) \end{array} \right\}$$

$$\begin{cases} rank(A) = dim(row - space) = 3, \\ Nullity(A) = 5 - 3 = 2 \end{cases}$$

Basis of subspaces

Suppose V is subspace of \mathbb{R}^n , spanned by a few given vectors. To find a basis of V do the following:

- Form a matrix A with these vectors, as rows.
- ightharpoonup Then, row space of A is V.
- ▶ A basis of the row space would be a basis of *V*.

Example 4.6.4

Let $S = \{(3,2,2), (6,5,-1), (1,1,-1)\}$. Find a basis of span(S), and dim(span(S)).

Solution. Form the matrix *A*, with these rows.

$$A = \left(\begin{array}{ccc} 3 & 2 & 2 \\ 6 & 5 & -1 \\ 1 & 1 & -1 \end{array}\right)$$

Solution: We try to reduce the matrix, to a matrix essentially in Echelon form.

Continued

Switch first and third rows:

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
6 & 5 & -1 \\
3 & 2 & 2
\end{array}\right)$$

Subtract 6 times 1^{st} row, from 2^{nd} and 3 times 1^{st} row, from 3^{rd} :

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & -1 & 5
\end{array}\right)$$

Continued

Subtract 2^{nd} row from 3^{rd} :

$$\left(\begin{array}{ccc}
1 & 1 & -1 \\
0 & -1 & 5 \\
0 & 0 & 0
\end{array}\right)$$

The matrix is essentially in row Echelon form. So,

$$\left\{ \begin{array}{l} \textit{Basis of span}(S) = \{(1,1,-1),(0,-1,5)\} \\ \dim(\textit{span}(S)) = 2 \end{array} \right.$$

Example 4.6.5

Let
$$A = \begin{pmatrix} 7 & 14 & -21 \\ 3 & 6 & -9 \\ -4 & -8 & 12 \end{pmatrix}$$

- Give basis of the row space of A
- ► Compute rank(A)
- ► Compute *Nullity*(*A*)
- ▶ Give a basis of the null space N(A).

Solution. First, reduce A to an, essentially, row echelon form.

Continued

Subtract 2 times 2^{nd} row of A from first:

$$\left(\begin{array}{ccc}
1 & 2 & -3 \\
3 & 6 & -9 \\
-4 & -8 & 12
\end{array}\right)$$

Subtract 3 times first row from second and, add 4 times first row to third:

$$\left(\begin{array}{ccc}
1 & 2 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)$$

This matrix is essentially in row echelon form.

Continued

- ▶ So, a Basis of the row space of A is $\{(1,2,-3)\}$
- ightharpoonup rank(A) = 1
- ► Nullity(A) = 3 1 = 2
- ▶ To compute N(A) and a a basis of N(A), we solve the homogeneous system for the above reduced matrix, which we do in the next frame.

Continued

The null space is the solution of the system, of one equation:

$$x + 2y - 3z = 0, Or x = 3z - 2y$$

$$With y = t, z = s, x = 3s - 2t$$

$$So, N(A) = \left\{ \begin{pmatrix} 3s - 2t \\ t \\ s \end{pmatrix} : t, s \in \mathbb{R} \right\}$$

Continued

Two comments:

- ▶ We already know, nullity(A) = 2. So, the basis of N(A) would have two vectors.
- Intuitively, two bases will be obtained by taking t = 1, s = 0 and t = 0, s = 1.

A basis of N(A) is:

$$\left\{ \left(\begin{array}{c} -2\\1\\0 \end{array} \right), \left(\begin{array}{c} 3\\0\\1 \end{array} \right) \right\}$$

Example 4.6.6

Let
$$A = \begin{pmatrix} 1 & 2 & 3 & 0 \\ 4 & -1 & 7 & 4 \\ 2 & 1 & 5 & 2 \\ 1 & 1 & 2 & 0 \end{pmatrix}$$

- ► Give basis of the row space of *A*
- Compute rank(A)
- ► Compute *Nullity*(*A*)
- ightharpoonup Give a basis of the null space N(A).

Continued

Solution. First, reduce A to an, essentially, row echelon form. Let me remind you that I avoided using TI-84, because, it brings in decimal numbers too quickly. As usual, subtract 4 times 1^{st} row from 2^{nd} , 2 times 1^{st} row from 3^{rd} , 1 times 1^{st} row from 4^{th} :

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 0 \\
0 & -9 & -5 & 4 \\
0 & -3 & -1 & 2 \\
0 & -1 & -1 & 0
\end{array}\right)$$

Continued

Switch 2^{nd} and 4^{th} row; them multiply the new 2^{nd} row by -1:

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & -1 & -1 & 0 \\
0 & -3 & -1 & 2 \\
0 & -9 & -5 & 4
\end{pmatrix}
\mapsto
\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & -3 & -1 & 2 \\
0 & -9 & -5 & 4
\end{pmatrix}$$

Add 3 times 2^{nd} row to 3^{rd} and 9 time 2^{nd} row to 4^{th} :

$$\left(\begin{array}{ccccc}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 2 \\
0 & 0 & 4 & 4
\end{array}\right)$$

Continued

Subtract, 2 times 3^{rd} row from 4^{th} :

$$\left(\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 2 & 2 \\
0 & 0 & 0 & 0
\end{array}\right)$$

This matrix is essentially in row Echelon form.

Continued

- So, a Basis of the row space of A is $\{(1,2,3,0),(0,1,1,0),(0,0,2,2)\}$
- ightharpoonup rank(A) = 3
- ► Nullity(A) = 4 3 = 1
- ▶ To compute N(A) and a basis of N(A), we solve the homogeneous system for the above reduced matrix, which we do in the next frame.

Continued

$$\begin{pmatrix} x_1 & +2x_2 & +3x_3 & = 0 \\ 0 & x_2 & +x_3 & = 0 \\ 0 & 0 & 2x_3 & +2x_4 & = 0 \end{pmatrix}$$
With $x_4 = t$
$$\begin{cases} x_1 = -2t + 3t = t \\ x_2 = t \\ x_3 = -t \\ x_4 = t \end{cases}$$

Preview
Row and Column Spaces
Rank of a Matrix
The Null Space
Solutions of Linear Systems
Summary Equivalent Conditions
Examples and Solutions

Finding Basis for the row space Finding basis of the column space Finding basis of subspaces of \mathbb{R}^n Problem on Null Spaces

Continued

The null space of A:

$$\mathcal{N}(A) = \left\{ \left(egin{array}{c} t \ t \ -t \ t \end{array}
ight) : t \in \mathbb{R}
ight\}$$

Since nullity(A) = 1, we are looking for one basis element. A basis of N(A) is (obtained by taking t = 1):

$$\left\{ \left(\begin{array}{c} 1\\1\\-1\\1 \end{array}\right)\right\}$$

Example 4.6.7

Let
$$A = \begin{pmatrix} 4 & -1 & 2 \\ 2 & 3 & -1 \\ 6 & 2 & 1 \end{pmatrix}$$

- Give basis of the row space of A
- ► Compute rank(A)
- ► Compute *Nullity*(*A*)
- ightharpoonup Give a basis of the null space N(A).

Continued

Solution. First, reduce *A* to an, essentially, row echelon form. Switch first and second row of *A*:

$$\left(\begin{array}{ccc}
2 & 3 & -1 \\
4 & -1 & 2 \\
6 & 2 & 1
\end{array}\right)$$

Subtract, 2 times first row from second and 3 times first row from third:

$$\left(\begin{array}{cccc}
2 & 3 & -1 \\
0 & -7 & 4 \\
0 & -7 & 4
\end{array}\right)$$

Continued

Subtract second row form third:

$$\left(\begin{array}{cccc}
2 & 3 & -1 \\
0 & -7 & 4 \\
0 & 0 & 0
\end{array}\right)$$

This matrix is, essentially in row Echelon form.

Continued

- So, a Basis of the row space of *A* is $\{(2,3,-1),(0,-7,4)\}$
- ightharpoonup rank(A) = 2
- ► Nullity(A) = 3 2 = 1
- ▶ To compute N(A) and a a basis of A, we solve the reduced system above, which we do in the next frame.

Continued

Subtract second row form third:

$$\begin{cases} 2x & +3y & -z & = 0 \\ & -7y & +4z & = 0 \end{cases} \implies \begin{cases} x = -\frac{3}{2}y + \frac{1}{2}z = -\frac{5}{14}z \\ y = \frac{4}{7}z \end{cases}$$

Taking z = t, we have

$$\mathit{N}(\mathit{A}) = \left\{ \left(egin{array}{c} -rac{5}{14}t \ rac{4}{7}t \ t \end{array}
ight) : t \in \mathbb{R}
ight\} = \left\{ \left(egin{array}{c} -rac{5}{14} \ rac{4}{7} \ 1 \end{array}
ight) t : t \in \mathbb{R}
ight\}$$

Continued

Since nullity(A) = 1, there is only one element in the basis of N(A), which can be obtained by taking t = 1. A basis of N(A) is:

$$\left\{ \left(\begin{array}{c} -\frac{5}{14} \\ \frac{4}{7} \\ 1 \end{array} \right) \right\}$$

Alternately, we could take t = 14 and another basis of N(A) would be

$$\left\{ \left(\begin{array}{c} -5 \\ 8 \\ 14 \end{array} \right) \right\}$$