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Homogeneous Linear SODEs

Second Order DE

▶ For many, the first encounter with second order ODE
occurs, as one starts getting familiar with the
concept of acceleration. Recall, acceleration is d2y

dt2
where

y is the distance travelled. Second Order ODE (SODE)
has wide range of applications, in the undergraduate
courses in Physics and Engineering, for the same reason.

▶ SODE models are used in fluid dynamics, heat equations,
wave motion, economics and so on.

▶ More importantly, a wide variety of SODEs can be solved
by analytically.
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Homogeneous Linear SODEs

Definition: SODEs

Definition. A second order ODE has the form

d2y

dt2 = f (t, y , y ′) (1)

where f is a function of t, y , y ′ := dy
dt

.
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Homogeneous Linear SODEs

Linear SODEs

▶ A SODE (1) is called a linear SODE (LSODE),
if f is linear. That means, if DE (1) has the form:

d2y

dt2 = f

(
t, y ,

dy

dt

)
= g(t)− q(t)y − p(t)

dy

dt

where g(t), p(t), q(t) are functions of t.
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Homogeneous Linear SODEs

Standard form of LSODEs

Such LSODEs are often written in the following forms:
▶ First,

d2y

dt2 + p(t)
dy

dt
+ q(t)y = g(t) (2)

where p(t), q(t), g(t) are functions of t. Then also as:

P(t)
d2y

dt2 + Q(t)
dy

dt
+ R(t)y = G (t) (3)

where P(t),Q(t),R(t),G (t) are functions of t.
▶ The LSODE (3) can be reduced to (2), when P(t) ̸= 0,

and conversely.
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Homogeneous Linear SODEs

Recall and Compare:

Recall the form of the first order linear ODE and compare:{
1st Order Linear : dy

dt
+ p(t)y = g(t)

2nd Order Linear : d2y
dt2

+ p(t)dy
dt

+ q(t)y = g(t)
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Homogeneous Linear SODEs

Initial value problems in SODEs

▶ An initial value problem (IVP) in SODE consists of ODE
(1), (2), or (3) together with initial value conditions:

y(t0) = y0, y ′(t0) = y ′
0.

So, one such form of a second order IVP is:{
d2y
dt2

+ p(t)dy
dt

+ q(t)y = g(t)
y(t0) = y0, y ′(t0) = y ′

0.
(4)

▶ As a rule of Thumb, two equations are needed to
determine two unknowns. The general solutions of (1)
involve two arbitrary constants c1, c2.
That is why (4) has two conditions.
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Homogeneous LSODEs

▶ A LSODE is called homogeneous, if the right hand side,
g(t) = 0 in (2), or if G (t) = 0 in (3).

▶ If g(t) ̸= 0 [resp. G (t) ̸= 0], the equations (2) [resp. (3)]
would be called a nonhomogeneous linear equation.

▶ So, the a homogeneous LSODE can be written as

P(t)
d2y

dt2 + Q(t)
dy

dt
+ R(t)y = 0 (5)

▶ In fact (§ 3.5?), solutions of homogeneous LSODE (5)
leads to solutions of nonhomogeneous LSODE (3).
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Rest of this Chapter

▶ In next few sections, we solve homogeneous equations (5)
with constant coefficients. So, they look like:

a
d2y

dt2 + b
dy

dt
+ cy = 0 a, b, c ∈ R. (6)

However, we comment on ODEs (5), as is.
▶ In latter sections, we solve nonhomogeneous equations,

whose left side is as in (6). So, they look like:

a
d2y

dt2 + b
dy

dt
+ cy = g(t) (7)
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