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Goals

In this section we discuss methods of solving
nonhomogeneous Linear ODE, of higher order.
As in the case of 2nd -order ODE, there are two methods:
▶ Method of Variation of Parameters, which we would state.
▶ Method of Undetermined Coefficients.

We would only comment on it.
We would mostly consider nonhomogeneous Linear ODE,
with constant coefficients.
Again, our goal is to provide an outline and flavor.
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Linear ODE of Order n

Recall, a Nonhomogeneous Linear ODE of order n
can be written as:

L(y) = g(t) with g(t) ̸= 0, where (1)
L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

L := Pn(t)
dn

dtn
+ Pn−1(t)

dn−1

dtn−1 + · · ·+ P1(t)
d
dt
+ P0(t)

(2)
We usually assume that pi(t), Pi(t), g(t)
are continuous on an open interval I .
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Definition

Definition A nonHomogeneous Linear ODE (1) is said to
have constant coefficient, if pi(t),Pi(t) are constant functions.
So, a linear Homogeneous ODE, of order n, with constant
coefficients looks like

L(y) = an
dny

dtn
+ an−1

dn−1y

dtn−1 + · · ·+ a1
dy

dt
+ a0y = g(t) (3)

with a0, a1, · · · , an ∈ R, an ̸= 0 and g(t) ̸= 0.
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The Corresponding Homogeneous ODE

Corresponding to the Homhomgeneous Linear ODE (1),
there is homogeneous Linear ODE

L(y) = 0 (4)

We would see subsequently, that solutions of the
Homhomgeneous Linear ODE (1) is derived from the
corresponding homogeneous Linear ODE (4).
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Role of the Homogeneous Part

The role of the corresponding homogeneous equation:
▶ Theorem 4.3.1 Let Y1,Y2 be two solutions of the

nonhomogeneous Linear ODE (1)

L(y) = g(t). Then Y1 − Y2 is a solution

of the corresponding homogeneous ODE L(y) = 0 (4).
▶ Proof. L(Y1) = g(t), L(Y2) = g(t) =⇒

L(Y1 − Y2) = L(Y1)− L(Y2) = g(t)− g(t) = 0.
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The General Solution

Theorem 4.3.2
▶ Fix a (particular) solution Y of the nonhomogeneous

Linear ODE (1) L(y) = g(t), of order n.
▶ Let y = y1, y = y2, . . . , y = yn be a fundamental set of

solutions of the homogeneous equation (4) L(y) = 0.
Then the general solution of (1) is:

y = c1y1(t) + c2y2(t) + · · · cnyn(t) + Y (t) (5)

where c1, c2, . . . , cn are arbitrary constants.
Use the notation yc =

∑n
i=1 ciyi(t).
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Method of Solutions

As mentioned above, we comment of two methods:
▶ Method of Variation of Parameters.
▶ Method of Undetermined Coefficients.
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Theorem 4.3.3: Variation of Parameters

Analogous to the method of variation of parameters,
for 2nd -Order Linear ODE,
for higher order we have:
Theorem 4.3.3: Consider former of the two forms of the
nonhomogeneous Linear ODE (1), of order n. That means,{

L(y) = g(t), with
L := dn

dtn
+ pn−1(t)

dn−1

dtn−1 + · · ·+ p1(t)
d
dt
+ p0(t)

(6)

▶ Assume pi(t), g(t) are continuous on an open interval I .
▶ Let y = y1, y = y2, . . . , y = yn be a fundamental set of

solutions of the homogeneous ODE L(y) = 0.
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Continued

Then: A particular solution of (6) is given by

Y =
n∑

i=1

yi(t)

∫
ωi(t)g(t)dt

W (t)
where (7)

▶ W (t) := W (y1, y2, . . . , yn) is Wronskian of y1, y2, . . . , yn.
▶ And, ωi(t) denotes the cofactor of y (n−1)

i in the
Wronskian matrix.
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Continued

▶ So, by (5), the general solution of (6) is

y = yc + Y =
n∑

i=1

ciyi + Y (8)
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Solving Problems

We worked out and assigned some problems on this topic, for
2nd -order Linear Homogeneous ODE. For order n ≥ 3,
methods will be same, while it would be further laborious. For
this reasons, we would not give any additional examples or
exercises in this section.
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Continued

Main points are:
▶ In this course, we only solve problems on nonhomgeneous

Linear ODE, with constant coefficients (3) L(y) = g(t).
Use Theorem 4.3.3 (Equation 7) to find a particular
solution y = Y .

▶ For such a Linear ODE, constant coefficients (3), consider
the homogeneous ODE L(y) = 0.
We elaborated methods to find a fundamental set of
solutions y = y1, . . . , y = yn, for L(y) = 0.
Now use Equation 5 to find a general solution.
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Method Of Undetermined Coefficients

Method of Undetermined Coefficients, for higher order Linear
ODE, with constant coefficients run similar to that of 2nd -order
Linear ODE, with constant coefficients. An interested reader
can look at internet or any standard Textbook.
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