Existence and Uniqueness Linearity and Homogeneity Fundamental Set of Solutions Rest of this Chapter

Chapter 4 Higher Order ODE §4.1 General Overview of Theory

Satya Mandal

U. Kansas

Arrowtic K-Theory
Fall 2025

Objective

- We discussed 1st and 2nd-Order ODEs. By Higher Order ODEs, we mean ODEs of order three and above.
- ► In this short exposition of Higher Order ODE, we discuss that the Theory of Higher Order ODE is strikingly similar to that of second order ODE, as discussed in Chapter 3.
- ► We give an overview of the same, to provide a the flavor, and not go deep into solving problems.

ODE of Order n

For an integer $n \ge 1$, an ODE of order n is given by

$$\frac{d^{n}y}{dt^{n}} = f\left(t, y, \frac{dy}{dt}, \dots, \frac{d^{n-1}y}{dt^{n-1}}\right) \tag{1}$$

Sometime, we use the notation: $y^{(r)} := \frac{d^r y}{dt^r}$. So, the above can be written as This is also written as

$$y^{(n)} = f(t, y, y', y^{(2)}, \dots, y^{(n-1)})$$

Linear ODE of Order n

An ODE of order n, in either one of following two forms

$$\begin{cases}
\frac{d^{n}y}{dt^{n}} + p_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{1}(t)\frac{dy}{dt} + p_{0}(t)y = g(t) \\
P_{n}(t)\frac{d^{n}y}{dt^{n}} + P_{n-1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + P_{1}(t)\frac{dy}{dt} + P_{0}(t)y = g(t)
\end{cases} (2)$$

is called a Linear ODE of order n. We usually assume that $p_i(t)$, $P_i(t)$, g(t) are continuous on an open interval I.

Linear Operators

In the context of (2), define linear operators:

$$\begin{cases}
\mathcal{L} := \frac{d^{n}}{dt^{n}} + p_{n-1}(t) \frac{d^{n-1}}{dt^{n-1}} + \dots + p_{1}(t) \frac{d}{dt} + p_{0}(t) \\
\mathcal{L} := P_{n}(t) \frac{d^{n}}{dt^{n}} + P_{n-1}(t) \frac{d^{n-1}}{dt^{n-1}} + \dots + P_{1}(t) \frac{d}{dt} + P_{0}(t)
\end{cases}$$
(3)

Such an operator \mathcal{L} acts on all *n*-times differentiable functions y = y(t). Further, the Linear ODE (2) can be written as

$$\mathcal{L}(y) = g(t) \tag{4}$$

An Initial Value Problem

Definition. Let \mathcal{L} be a differential operator, as in (3). An Initial Value Problem (IVP), of order n is as follows:

$$\begin{cases} \mathcal{L}(y) = g(t) & \text{as in (1)} \\ y(t_0) = y_0, & t_0 \in I \\ y'(t_0) = y_1, & & \\ \dots & & \\ y^{(n-1)}(t_0) = y_{n-1} \end{cases}$$
 (5)

The Existence and Uniqueness Theorem

Theorem 4.1.1. Consider the Initial value Problem (5). Assume $p_i(t)$, g(t) or P(t), g(t) are continuous on the interval I. Then

- ▶ The IVP (5) has a solution $y = \varphi(t)$.
- ▶ The domain of $y = \varphi(t)$ is I,
- ▶ The solution $y = \varphi(t)$ is unique, on I.

Homogeneous Linear ODE

Consider the Linear ODE (2). If g(t) = 0, in (2), then (2), would be called Homogenous. So, a homogenous ODE can be written as

$$\mathcal{L}(y) = 0 \tag{6}$$

where as in (3)

$$\begin{cases}
\mathcal{L} := \frac{d^{n}}{dt^{n}} + p_{n-1}(t) \frac{d^{n-1}}{dt^{n-1}} + \dots + p_{1}(t) \frac{d}{dt} + p_{0}(t) \\
\mathcal{L} := P_{n}(t) \frac{d^{n}}{dt^{n}} + P_{n-1}(t) \frac{d^{n-1}}{dt^{n-1}} + \dots + P_{1}(t) \frac{d}{dt} + P_{0}(t)
\end{cases} (7)$$

Linearity Lemmas

Lemma 4.1.2 Let \mathcal{L} be a differential operator, as in (7). Then for any two *n*-times differentiable functions $\begin{cases} y = \varphi_1(t) \\ y = \varphi_2(t) \end{cases}$, and real numbers c_1, c_2 , we have

$$\mathcal{L}\left(c_{1}\varphi_{1}+c_{2}\varphi_{2}
ight)=c_{1}\mathcal{L}\left(\varphi_{1}
ight)+c_{2}\mathcal{L}\left(\varphi_{2}
ight)$$

Linear Combination of Solutions

Lemma 4.1.3 Let $y = y_1(t), y = y_2(t), \dots, y = y_k(t)$ be solutions of the Homogeneous ODE (6), and c_1, \dots, c_k be real numbers. Then the linear combination

$$y = c_1 y_1 + c_2 y_2 + \cdots + c_k y_k$$
 is also a solutions of (6).

Proof. Follows from Lemma 4.1.1, by induction.

Further Goals

We know,

- ► The Linear Homogeneous ODE (6) has a trivial solution y = 0, the constant zero function.
- ► Any constant linear combination of solutions of (6) is also a solution of (6), by Lemma 4.1.3,

Continued

Recall, n is the Order of the Linear Homogeneous ODE (6) .

Question: Fix
$$n$$
 solutions
$$\begin{cases} y = y_1(t) \\ y = y_2(t) \\ \dots \\ y = y_n(t) \end{cases}$$
 of the Linear Homogenous ODE (6). Suppose, $y = \varphi(t)$ is any other solution of (6).

Question is, whether or when we can write write φ as a constant linear combinations of

$$y = y_1(t), y = y_2(t), \cdots, y = y_n(t)$$
?

Definition: The Fundamental Set

Definition: Fix
$$n$$
 solutions
$$\begin{cases} y = y_1(t), \\ y = y_2(t), \\ \cdots, \\ y = y_n(t) \end{cases}$$
 of the Linear

Homogenous ODE (6).

We say that they form a Fundamental Set of solutions of (6), if given any solution $y = \varphi(t)$ of (6), we can write it as is a constant linear combination That means, if

$$y = \varphi(t) = \sum_{i=1}^{n} c_i y_i(t)$$
 for some $c_1, \ldots, c_n \in \mathbb{R}, \ \forall \ t \in I$,

Wronskian

Definition. Let $y = y_1(t), y = y_2(t), \dots, y = y_n(t)$ be n-1-times differentiable functions on an open interval $I : \alpha < t < \beta$.

The Wronskian W(t), of these functions is defined as:

$$W(t) = \begin{vmatrix} y_{1}(t) & y_{2}(t) & y_{3} & \cdots & y_{n}(t) \\ y'_{1}(t) & y'_{2}(t) & y_{3} & \cdots & y'_{n}(t) \\ y_{1}^{(2)}(t) & y_{2}^{(2)}(t) & y_{3}^{(2)} & \cdots & y_{n}^{(2)}(t) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ y_{1}^{(n-1)}(t) & y_{2}^{(n-1)}(t) & y_{3}^{(n-1)} & \cdots & y_{n}^{(n-1)}(t) \end{vmatrix} \quad t \in I$$
(8)

Continued

Sometimes, to indicate its dependence on $y = y_1(t), y = y_2(t), \dots, y = y_n(t)$, the Wronskian W(t) is denoted by

$$W(y_1, y_2, \cdots, y_n)(t) := W(t)$$

The (Wronskian) Theorem 4.1.4

Theorem 4.1.4 We consider the 1st one, of the two, forms of the Linear Homogeneous ODE

$$\mathcal{L}(y) = \frac{d^n y}{dt^n} + \rho_{n-1}(t) \frac{d^{n-1} y}{dt^{n-1}} + \dots + \rho_1(t) \frac{dy}{dt} + \rho_0(t) y = 0 \quad (9)$$

Assume $p_i(t)$ are continuous on and open interval I. Fix n solutions $y = y_1(t), y = y_2(t), \dots, y = y_n(t)$ of (9).

Theorem 4.1.4: Continued

Let W(t) denote the Wronskian of $y = \varphi_1(t), y = \varphi_2(t)$. Then the following three conditions are equivalent:

- (1) $W(t) \neq 0$ for all $t \in I$.
- (2) $W(t_0) \neq 0$.
- (3) $y = y_1(t), y = y_2(t), \dots, y = y_n(t)$ form a Fundamental set of Solutions of (9).

Rest of This Chapter

Goal of this chapter remains to provide a flavor of the theory of Higher Order ODEs.

- ► The next section gives a overview of Homogeneous Linear ODE (6), with constant coefficients.
- ► The last section comments on the Methods to solve Nonhomogenous Linear ODE with constant coefficients. Again, these methods are strikingly similar, to that of 2nd-Order Linear ODEs, namely, the Method of Variation of Parameter and the Method of Undetermined Coefficients.

Definition

Definition A Homogeneous Linear ODE (6) is said to have constant coefficient, if $p_i(t)$, $P_i(t)$ are constant functions. So, a linear Homogeneous ODE, of order n, with constant coefficients looks like

$$\mathcal{L}(y) = a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = 0 \quad (10)$$

with $a_0, a_1, \cdots, a_n \in \mathbb{R}$ and $a_n \neq 0$.

Definition

Definition A nonHomogeneous Linear ODE (2) is said to have constant coefficient, if $p_i(t)$, $P_i(t)$ are constant functions. So, a linear Homogeneous ODE, of order n, with constant coefficients looks like

$$\mathcal{L}(y) = a_n \frac{d^n y}{dt^n} + a_{n-1} \frac{d^{n-1} y}{dt^{n-1}} + \dots + a_1 \frac{dy}{dt} + a_0 y = g(t) (11)$$

with $a_0, a_1, \dots, a_n \in \mathbb{R}$, $a_n \neq 0$ and $g(t) \neq 0$.