Chapter 7 Linear Transformations § 7.2 Properties of Homomorphisms

Satya Mandal

U. Kansas

Arrowtic K-Theory

Fall 2025

Goals

- ► In this section we discuss the fundamental properties of homomorphisms of vector spaces.
- Reminder: We remind ourselves that homomorphisms of vectors spaces are also called Linear Maps and Linear Transformations.
 We use these three expressions, inter changeably.

Lemma 7.2.1:The First Property

Property: Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a homomorphism. Then $T(\mathbf{0}_V) = \mathbf{0}_W$, where $\mathbf{0}_V$ denotes the zero of V and $\mathbf{0}_W$ is the zero of W.

(**Notations**: When clear from the context, denote zero of the respective vector space by $\mathbf{0}$; and drop the subscript V, W etc.)

Continued

Proof. We have $T(\mathbf{0}) = T(\mathbf{0} + \mathbf{0}) = T(\mathbf{0}) + T(\mathbf{0})$. Add $-T(\mathbf{0})$ on both sides of the equation. We have

$$T(\mathbf{0}) - T(\mathbf{0}) = (T(\mathbf{0}) + T(\mathbf{0})) - T(\mathbf{0})$$

So,
$$\mathbf{0}_W = T(\mathbf{0}) + (T(\mathbf{0})) - T(\mathbf{0}) = T(\mathbf{0}) + \mathbf{0}_W = T(\mathbf{0}).$$

Theorem 7.2.2: Equivalent Characterization

Theorem 7.2.2: Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a function (set theoretic).

Then T is a homomorphism (i. e. Linear map) if and only if

$$T(r\mathbf{u} + s\mathbf{v}) = rT(\mathbf{u}) + sT(\mathbf{v}) \quad \forall \ \mathbf{u}, \mathbf{v} \in V \ r, s \in \mathbb{R}.$$
 (1)

Proof. Suppose the condition (1) holds. With r = s = 1, it follows from condition (1)

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$$
 for all $\mathbf{u}, \mathbf{v} \in V$.

Continued

Taking s = 0, it follows from condition (1)

$$T(r\mathbf{u}) = T(r\mathbf{u} + 0\mathbf{v}) = rT(\mathbf{u}) + 0T(\mathbf{v}) = rT(\mathbf{u})$$

So, it is established that T is a homomorphism.

Conversely, suppose T is a homomorphism. We will prove that condition (1) holds. From the first, then second property of homomorphism, it follows

$$T(r\mathbf{u} + s\mathbf{v}) = T(r\mathbf{u}) + T(s\mathbf{v}) = rT(\mathbf{u}) + sT(\mathbf{v})$$

So, the equation (1) is established.

Corollary 7.2.3:Linearity, with finite sum

Suppose V, W are two vector spaces and $T: V \longrightarrow W$ is a homomorphism (i. e. Linear map). Let $\mathbf{u}_1, \dots, \mathbf{u}_n \in V$ be n vectors and $c_1, \dots, c_n \in \mathbb{R}$ be n scalars. Then

$$T(c_1\mathbf{u}_1+\cdots+c_n\mathbf{u}_n)=c_1T(\mathbf{u}_1)+\cdots+c_nT(\mathbf{u}_n).$$

Proof. (We use method of induction, to prove this.) The method has two steps.

- ▶ (Initialization Step:) When, n = 1, we need to prove $T(c_1\mathbf{u}_1) = c_1T(\mathbf{u}_1)$. This follows from the second condition of the definition homomorphisms.
- ▶ (Induction Step:) We assume the the proposition is valid for n-1 summands (or fewer summands) and prove it for n summands. By this assumption

$$T(c_1\mathbf{u}_1 + \dots + c_{n-1}\mathbf{u}_{n-1}) = c_1T(\mathbf{u}_1) + \dots + c_{n-1}T(\mathbf{u}_{n-1}).$$

By $n = 1$ case: $T(c_n\mathbf{u}_n) = c_nT(\mathbf{u}_n)$

Continued

▶ By first condition of the definition homomorphisms

$$\begin{cases}
T (c_1 \mathbf{u}_1 + \dots + c_{n-1} \mathbf{u}_{n-1} + c_n \mathbf{u}_n) \\
= T ((c_1 \mathbf{u}_1 + \dots + c_{n-1} \mathbf{u}_{n-1}) + c_n \mathbf{u}_n) \\
= T (c_1 \mathbf{u}_1 + \dots + c_{n-1} \mathbf{u}_{n-1}) + T (c_n \mathbf{u}_n) \\
= c_1 T (\mathbf{u}_1) + \dots + c_{n-1} T (\mathbf{u}_{n-1}) + c_n T (\mathbf{u}_n)
\end{cases}$$

The proof is complete.

Prelude.

A basis of a vector space V dictates most of the properties of V. The next theorem does exactly the same for Homomorphisms (i. e. linear maps) $T:V\longrightarrow W$.

Theorem 7.2.4:Bases and Linear Maps

Let V, W be two vector spaces. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ be a basis of V and $\mathbf{w}_1, \dots, \mathbf{w}_m \in W$ be m vectors in W.

► (**Existence**): Then there is a homomorphisms $T: V \longrightarrow W$ such that

$$T(\mathbf{v}_1) = \mathbf{w}_1, \ T(\mathbf{v}_2) = \mathbf{w}_2, \ \cdots, \ T(\mathbf{v}_m) = \mathbf{w}_m.$$
 (2)

▶ (**Uniqueness**): The Equation(2) determines a unique homomorphisms $T: V \longrightarrow W$.

Continued

Proof.

▶ First, we define $T: V \longrightarrow W$. Let $\mathbf{x} \in V$. By property of bases, there are scalars $c_1, \ldots, c_n \in \mathbb{R}$, such that

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \cdots + c_n \mathbf{v}_m$$

Define
$$T(\mathbf{x}) = c_1 \mathbf{w}_1 + c_2 \mathbf{w}_2 + \cdots + c_n \mathbf{w}_m$$

Given $\mathbf{x} \in V$, c_1, \ldots, c_m are uniquely determined by \mathbf{x} . So, $T(\mathbf{x})$ is well defined.

(One needs to justify so called "well defined-ness", whenever something is defined.)

Continued

So, T is already defines as a set theoretic map. We need to show T is a homomorphism. Let $\mathbf{x} \in V$ be as above and $\mathbf{y} \in V$ be another vector. There are scalars $d_1, \ldots, d_n \in \mathbb{R}$, such that

$$\begin{cases} \mathbf{y} = d_1 \mathbf{v}_1 + \dots + d_m \mathbf{v}_m. & \text{By definition,} \\ T(\mathbf{y}) = d_1 \mathbf{w}_1 + \dots + d_m \mathbf{w}_m \\ \mathbf{x} + \mathbf{y} = (c_1 + d_1) \mathbf{v}_1 + (c_2 + d_2) \mathbf{v}_2 + \dots + (c_m + d_m) \mathbf{v}_m \\ \text{ByDefinition,} T(\mathbf{x} + \mathbf{y}) = (c_1 + d_1) \mathbf{w}_1 + \dots + (c_n + d_n) \mathbf{w}_n \\ = (c_1 \mathbf{w}_1 + \dots + c_m \mathbf{w}_m) + (d_1 \mathbf{w}_1 + \dots + d_m \mathbf{w}_m) \\ = T(\mathbf{x}) + T(\mathbf{y}). \end{cases}$$

The first (the additive) property of homomorphism is checked.

Continued

Now, we prove the T satisfies the second condition:

▶ Let $\mathbf{x} \in V$ be as above and $r \in \mathbb{R}$ be a scalars. Then

$$\begin{cases} r\mathbf{x} = (rc_1)\mathbf{v}_1 + \dots + (rc_n)\mathbf{v}_m \\ \text{By Definition, } T(r\mathbf{x}) = (rc_1)\mathbf{w}_1 + \dots + (rc_m)\mathbf{w}_m \\ = (rc_1)\mathbf{w}_1 + \dots + (rc_m)\mathbf{w}_m = r(c_1\mathbf{w}_1 + \dots + c_m\mathbf{w}_m) \\ = rT(\mathbf{x}) \end{cases}$$

The second property of homomorphism is checked. So, it is established that T is a homomorphism (i. e. Existence of T is established.).

Continued

Now we prove uniqueness part. Let $T_1, T_2 : V \longrightarrow W$ be two homomorphism, satisfying Equation (2), meaning

$$\begin{cases} T_1(\mathbf{v}_1) = \mathbf{w}_1 & T_1(\mathbf{v}_2) = \mathbf{w}_2, & \cdots, & T_1(\mathbf{v}_m) = \mathbf{w}_m \\ T_2(\mathbf{v}_1) = \mathbf{w}_1 & T_2(\mathbf{v}_2) = \mathbf{w}_2, & \cdots, & T_2(\mathbf{v}_m) = \mathbf{w}_m \end{cases}$$

For all $\mathbf{x} \in V$, we need to prove $T_1(\mathbf{x}) = T_2(\mathbf{x})$. As before $\mathbf{x} \in V$, we can write

$$\mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_m \mathbf{v}_m$$
 for some $c_1, \dots, c_m \in \mathbb{R}$.

Continued

Since $T_1, T_2: V \longrightarrow W$ are homomorphism,

$$\begin{cases} T_{1}(\mathbf{x}) = T_{1}(\mathbf{v}_{1}) + c_{2}T_{1}(\mathbf{v}_{2}) + \cdots + c_{m}T_{1}(\mathbf{v}_{m}) \\ = c_{1}\mathbf{w}_{1} + c_{2}\mathbf{w}_{2} + \cdots + c_{m}\mathbf{w}_{m} \\ \text{Likewise,} \\ T_{2}(\mathbf{x}) = T_{2}(\mathbf{v}_{1}) + c_{2}T_{2}(\mathbf{v}_{2}) + \cdots + c_{m}T_{2}(\mathbf{v}_{m}) \\ = c_{1}\mathbf{w}_{1} + c_{2}\mathbf{w}_{2} + \cdots + c_{m}\mathbf{w}_{m} \end{cases}$$

So, $T_1(\mathbf{x}) = T_2(\mathbf{x})$. This completes the proof of Part 2 (the uniqueness part).

Example 7.2.1

$$\mathbf{e}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{e}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{e}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \in \mathbb{R}^3$$
 (3)

be the standard basis of \mathbb{R}^3 . Let

$$\mathbf{v}_1 = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight), \mathbf{v}_2 = \left(egin{array}{c} -1 \ 1 \ 1 \end{array}
ight), \mathbf{v}_3 = \left(egin{array}{c} 0 \ -1 \ 1 \end{array}
ight) \in \mathbb{R}^3$$

Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ forms a basis of \mathbb{R}^3 (we do not prove this)

Continued

Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ be the homomorphism defined by

$$\mathcal{T}\left(\textbf{v}_{1}\right)=\left(\begin{array}{c}1\\1\end{array}\right),\quad\mathcal{T}\left(\textbf{v}_{2}\right)=\left(\begin{array}{c}-1\\1\end{array}\right),\quad\mathcal{T}\left(\textbf{v}_{3}\right)=\left(\begin{array}{c}0\\-1\end{array}\right),$$

Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$, $T(\mathbf{e}_3)$. More generally, compute $T\begin{pmatrix} a \\ b \end{pmatrix}$.

Continued

Solution: Write

$$\mathbf{e}_1 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3 \quad \left\{ \begin{array}{l} \textit{as linear combination of} \\ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \\ \alpha, \beta, \gamma \in \mathbb{R} \end{array} \right.$$

In matrix form:

$$\begin{aligned} \mathbf{e}_1 &= \left(\begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{array} \right) \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array} \right) = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{array} \right) \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array} \right) \\ A &= \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{array} \right) \quad A^{-1} = \frac{1}{4} \left(\begin{array}{ccc} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{array} \right)$$

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1}\mathbf{e}_1 = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$$

So,
$$\mathbf{e}_1 = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} .5 \\ -.5 \\ 0 \end{pmatrix} = .5(\mathbf{v}_1 - \mathbf{v}_2)$$
So $T(\mathbf{e}_1) = .5(T(\mathbf{v}_1) - T(\mathbf{v}_2)) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

Continued

Now compute $T(\mathbf{e}_2)$. As before, write $\mathbf{e}_2 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$

So
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1}\mathbf{e}_{2} = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix}$$

So, $\mathbf{e}_{2} = \begin{pmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{pmatrix} \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix} = .25\mathbf{v}_{1} + .25\mathbf{v}_{2} - .5\mathbf{v}_{3}$

So $T(\mathbf{e}_{2}) = .25 (T(\mathbf{v}_{1}) + .25T(\mathbf{v}_{2})) - .5T(\mathbf{v}_{3})$

$$= .25 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + .25 \begin{pmatrix} -1 \\ 1 \end{pmatrix} - .5 \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Continued

Now compute $T(\mathbf{e}_3)$. As before, write $\mathbf{e}_3 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$

So
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1}\mathbf{e}_{3} = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} .25 \\ .25 \\ .5 \end{pmatrix}$$

So, $\mathbf{e}_{3} = \begin{pmatrix} \mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3} \end{pmatrix} \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix} = .25\mathbf{v}_{1} + .25\mathbf{v}_{2}) + 5\mathbf{v}_{3}$

So $T(\mathbf{e}_{3}) = .25 (T(\mathbf{v}_{1}) + .25T(\mathbf{v}_{2})) + .5T(\mathbf{v}_{3})$

$$= .25 \begin{pmatrix} 1 \\ 1 \end{pmatrix} + .25 \begin{pmatrix} -1 \\ 1 \end{pmatrix} + .5 \begin{pmatrix} 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Continued

Finally,

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3.$$

So,

$$T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = aT(\mathbf{e}_1) + bT(\mathbf{e}_2) + cT(\mathbf{e}_3)$$

$$= a \begin{pmatrix} 1 \\ 0 \end{pmatrix} + b \begin{pmatrix} 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

Example 7.2.2

Let $\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\in\mathbb{R}^3$ be the standard basis of \mathbb{R}^3 , as in (3) and Let

$$\mathbf{v}_1 = \left(egin{array}{c} 1 \ 1 \ 1 \end{array}
ight), \mathbf{v}_2 = \left(egin{array}{c} -1 \ 1 \ 1 \end{array}
ight), \mathbf{v}_3 = \left(egin{array}{c} 0 \ -1 \ 1 \end{array}
ight) \in \mathbb{R}^3$$

Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ forms a basis of \mathbb{R}^3 (we do not prove this) Let $T: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$ be the homomorphism defined by

$$\mathcal{T}\left(\mathbf{v}_{1}
ight)=\left(egin{array}{c} -1\ -1\ -1\ 3 \end{array}
ight), \quad \mathcal{T}\left(\mathbf{v}_{2}
ight)=\left(egin{array}{c} 1\ -1\ -1\ 1 \end{array}
ight), \quad \mathcal{T}\left(\mathbf{v}_{3}
ight)=\left(egin{array}{c} 0\ 1\ -1\ 0 \end{array}
ight),$$

Continued

Compute $T(\mathbf{e}_1)$, $T(\mathbf{e}_2)$, $T(\mathbf{e}_3)$. More generally, compute $T\begin{pmatrix} a \\ b \end{pmatrix}$.

Solution: Steps are very similar to the above problem. We will write $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, as linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. First, write $\mathbf{e}_1 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$.

Continued

In matrix form:

$$\mathbf{e}_1 = \left(\begin{array}{ccc} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}\right) = \left(\begin{array}{ccc} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{array}\right) \left(\begin{array}{c} \alpha \\ \beta \\ \gamma \end{array}\right)$$

$$A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{pmatrix} \quad A^{-1} = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix}$$

$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1}\mathbf{e}_1 = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/2 \\ -1/2 \\ 0 \end{pmatrix}$$

So,
$$\mathbf{e}_1 = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} .5 \\ -.5 \\ 0 \end{pmatrix} = .5(\mathbf{v}_1 - \mathbf{v}_2)$$

So
$$T(\mathbf{e_1}) = .5 \left(T(\mathbf{v_1}) - T(\mathbf{v_2})\right)$$

= $.5 \begin{pmatrix} -1 \\ -1 \\ -1 \\ 3 \end{pmatrix} - .5 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$

Continued

Now compute $T(\mathbf{e}_2)$. As before, write $\mathbf{e}_2 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$

So
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1} \mathbf{e}_2 = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix}$$

So,
$$\mathbf{e}_2 = \begin{pmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{pmatrix} \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix} = .25\mathbf{v}_1 + .25\mathbf{v}_2 - .5\mathbf{v}_3$$

So
$$T(\mathbf{e}_2) = .25 \left(T(\mathbf{v}_1) + .25T(\mathbf{v}_2)\right) - .5T(\mathbf{v}_3)$$

$$= .25 \begin{pmatrix} -1 \\ -1 \\ -1 \\ 3 \end{pmatrix} + .25 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} - .5 \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

$$= \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix}$$

Continued

Now compute $T(\mathbf{e}_3)$. As before , write $\mathbf{e}_3 = \alpha \mathbf{v}_1 + \beta \mathbf{v}_2 + \gamma \mathbf{v}_3$

So
$$\begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix} = A^{-1}\mathbf{e}_3 = \frac{1}{4} \begin{pmatrix} 2 & 1 & 1 \\ -2 & 1 & 1 \\ 0 & -2 & 2 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} .25 \\ .25 \\ .5 \end{pmatrix}$$

So,
$$\mathbf{e}_3 = (\mathbf{v}_1 \ \mathbf{v}_2 \ \mathbf{v}_3) \begin{pmatrix} .25 \\ .25 \\ -.5 \end{pmatrix} = .25\mathbf{v}_1 + .25\mathbf{v}_2 + 5\mathbf{v}_3$$

So
$$T(\mathbf{e}_3) = .25 T(\mathbf{v}_1) + .25 T(\mathbf{v}_2) + .5 T(\mathbf{v}_3)$$

= $.25 \begin{pmatrix} -1 \\ -1 \\ -1 \\ 3 \end{pmatrix} + .25 \begin{pmatrix} 1 \\ -1 \\ -1 \\ 1 \end{pmatrix} + .5 \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix}$

Finally,
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = a\mathbf{e}_1 + b\mathbf{e}_2 + c\mathbf{e}_3.$$
So, $T \begin{pmatrix} a \\ b \\ c \end{pmatrix} = aT(\mathbf{e}_1) + bT(\mathbf{e}_2) + cT(\mathbf{e}_3)$

$$= a \begin{pmatrix} -1 \\ 0 \\ 0 \\ 1 \end{pmatrix} + b \begin{pmatrix} 0 \\ -1 \\ 0 \\ 1 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} -a \\ -b \\ -c \\ a+b+c \end{pmatrix}$$

Exercises 1

Let $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \in \mathbb{R}^3$ be the standard basis of \mathbb{R}^3 , as in (3)

and
$$\mathbf{v}_1 = \begin{pmatrix} \frac{1}{2} \\ -1 \\ 1 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ \frac{1}{2} \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ -1 \end{pmatrix} \in \mathbb{R}^3$$

Then $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ form a basis of \mathbb{R}^3 (need not check). Let $\mathcal{T}: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ be be the homomorphism, defined by

$$T(\mathbf{v}_1) = \mathbf{v}_1$$
, $T(\mathbf{v}_2) = \mathbf{0}$, $T(\mathbf{v}_3) = \mathbf{0}$. Compute

$$T(\mathbf{e}_1), T(\mathbf{e}_2), T(\mathbf{e}_3)$$
, and in particular $T\begin{pmatrix} a \\ b \\ c \end{pmatrix}$.

Exercise 2

Let $\mathbb{P}_2(\mathbb{R})$ be the vector space of all polynomials f with $\deg(f) \leq 2$. Then

$$\mathbf{p}_1(x) = 1 + x + x^2$$
, $\mathbf{p}_2(x) = x + x^2$, $\mathbf{p}_3(x) = x^2$ is a basis of $\mathbb{P}_2(\mathbb{R})$.

Define the homomorphism $T: \mathbb{P}_2(\mathbb{R}) \longrightarrow \mathbb{M}_2(\mathbb{R})$ by

$$T\left(\mathbf{p}_{1}
ight)=\left(egin{array}{cc} 1 & 1 \ 1 & 0 \end{array}
ight) \ T\left(\mathbf{p}_{2}
ight)=\left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight) \ T\left(\mathbf{p}_{1}
ight)=\left(egin{array}{cc} 0 & 0 \ 1 & 0 \end{array}
ight).$$

Compute T(1), T(x), $T(x^2)$ and in general $T(a + bx + cx^2)$.

Preview

Recall, given a matrix $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, there is a an homomorphism

$$T: \mathbb{R}^n \longrightarrow \mathbb{R}^m$$
 defined by $T(\mathbf{x}) = A\mathbf{x} \quad \forall \ \mathbf{x} \in \mathbb{R}^n$.

We demonstrate that, any homomorphism $T:V\longrightarrow W$ of vectors spaces, with finite dimension, are determined by matrices, in some sense to be elaborated.

Theorem 7.2.5: Matrices to Homomorphisms

Let V, W be two vector spaces.

- Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in V$ be a basis of V and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \in W$ be elements in W.
- ► Let

$$A=\left(egin{array}{cccc} a_{11}&a_{12}&\cdots&a_{1n}\ a_{21}&a_{22}&\cdots&a_{2n}\ \cdots&\cdots&\cdots&lpha_{m1}&a_{m2}&\cdots&a_{mn} \end{array}
ight)\in\mathbb{M}_{m imes n}(\mathbb{R})$$

Continues: Matrix A to T_A

Then there is a homomorphism $T_A:V\longrightarrow W$ such that

$$\begin{cases}
T_{A}(\mathbf{v}_{1}) = a_{11}\mathbf{w}_{1} + a_{12}\mathbf{w}_{2} + \dots + a_{1n}\mathbf{w}_{n} \\
T_{A}(\mathbf{v}_{2}) = a_{21}\mathbf{w}_{1} + a_{22}\mathbf{w}_{2} + \dots + a_{2n}\mathbf{w}_{n} \\
\dots \\
T_{A}(\mathbf{v}_{m}) = a_{m1}\mathbf{w}_{1} + a_{m2}\mathbf{w}_{2} + \dots + a_{mn}\mathbf{w}_{n}
\end{cases} (4)$$

In matrix notation,

$$\begin{pmatrix} T_{A}(\mathbf{v}_{1}) \\ T_{A}(\mathbf{v}_{2}) \\ \cdots \\ T_{A}(\mathbf{v}_{m}) \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \cdots \\ \mathbf{w}_{n} \end{pmatrix}$$
(5)

Continues

Proof. It follows from Theorem 7.2.4 and equation (4) and theorem above.

We Remark:

- The notation T_A was chosen, with subscript A, to show its dependence on A, and for future reference.
- ▶ T_A , also, depend on the basis $\{\mathbf{v}_1, \ldots, \mathbf{v}_m\} \subseteq V$ and elements $\{\mathbf{w}_1, \ldots, \mathbf{w}_m \in W\}$. That means, if we change the basis \mathbf{v}_i , or elements $\{\mathbf{w}_j\}$ the homomorphism T_A we get will be different.

Continues

Suppose $V = \mathbb{R}^m$ and $W = \mathbb{R}^n$. Let $\{\mathbf{v}_1, \dots, \mathbf{v}_m \in V\}$ be the standard basis of $V = \mathbb{R}^m$ meaning $\mathbf{v}_i = \mathbf{e}_i \in \mathbb{R}^n$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_m \in W\}$ be the standard basis of $W = \mathbb{R}^n$ meaning $\mathbf{w}_i = \mathbf{e}_i \in \mathbb{R}^m$ (as in Equation 3). Then

$$T_A(\mathbf{x}) = A^t \mathbf{x} \qquad \forall \ \mathbf{x} \in \mathbb{R}^m.$$

This example was discussed before.

▶ A converse of the above is also valid as follows.

Theorem 7.2.6:Homomorphisms to Matrices

Let V, W be two vector spaces. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m \in V$ be a basis of V and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n \in W$ be basis in W. Let $T: V \longrightarrow W$ be a homomorphism. Since, $\{\mathbf{w}_j\}$ is a basis of W, we can back track the above steps and write uniquely:

$$\begin{cases}
T(\mathbf{v}_1) = a_{11}\mathbf{w}_1 + a_{12}\mathbf{w}_2 + \dots + a_{1n}\mathbf{w}_n \\
T(\mathbf{v}_2) = a_{21}\mathbf{w}_1 + a_{22}\mathbf{w}_2 + \dots + a_{2n}\mathbf{w}_n \\
\dots \\
T(\mathbf{v}_m) = a_{m1}\mathbf{w}_1 + a_{m2}\mathbf{w}_2 + \dots + a_{mn}\mathbf{w}_n
\end{cases} (6)$$

with unique $a_{ij} \in \mathbb{R}$.

Continued: T to Matrix

This way we get a well defined matrix

$$\mathbf{A}_{T} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$
 (7

We remark, the \mathbf{A}_T depends on the choice of bases of V and of W, as above.

Theorem 7.2.7:The Correspondence

Let V, W be two vector spaces. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$ be a basis of V and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_n$ be basis in W. Let $\mathcal{L}(V, W)$ be the set of all homomorphisms $V \longrightarrow W$.

- ▶ Define $\varphi : \mathcal{L}(V, W) \longrightarrow \mathbb{M}_{m \times n}(\mathbb{R})$ by $\varphi(T) = A_T$, where $A_T \in \mathbb{M}_{m \times n}(\mathbb{R})$ is the matrix is as in Theorem 7.2.6. Then φ is a well defined bijective correspondence.
- ▶ Define $\psi : \mathbb{M}_{m \times n}(\mathbb{R}) \longrightarrow \mathcal{L}(V, W)$ by $\psi(A) = T_A$, where $T_A \in \mathcal{L}(V, W)$ is as in Theorem 7.2.5. Then ψ and φ are the inverses of each other.

Proof

Proof. It follows from the above discussions on the definitions of A_T and T_A . We skip the details of the proof.

Remark. We comment that A_T and T_A depend on the choices of bases $\{\mathbf{v}_i\}$ of V and $\{\mathbf{w}_j\}$ of W. Hence φ and ψ would also do the same.

Definitions and Theorem 7.2.8

Definitions. Let V, W be two vector spaces and $T: V \longrightarrow W$ is a homomorphism. Then define

$$\begin{cases} \mathcal{N}(T) = \{ \mathbf{v} \in V : T(\mathbf{v}) = \mathbf{0}_W \} . \\ \mathcal{R}(T) = \{ \mathbf{w} \in W : w = T(\mathbf{v}) \text{ for some } \mathbf{v} \in V \} . \end{cases}$$

- ▶ Then $\mathcal{N}(T)$ is a subspace of V. This subspace $\mathcal{N}(T)$ is called the Null Space of T.
- ▶ Then $\mathcal{R}(T)$ is a subspace of W. This subspace $\mathcal{R}(T)$ is called the Range of T.

Proof. Skip

Continued

As before $T:V\longrightarrow W$ be a homomorphism. Also, define

- $ightharpoonup Nullity(T) = \dim \mathcal{N}(T).$
- $ightharpoonup rank(T) = \dim \mathcal{R}(T)$

Motivating Example

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$ and $T = T_A : \mathbb{R}^m \longrightarrow \mathbb{R}^n$ be as above.

- Then $\mathcal{N}(T) = \mathcal{N}(A)$. In words, the Null space of T and Null space of A are same.
 - Therefore, $Nullity(T) = Nullity(A^t)$.
- Also, the range $\mathcal{R}(T)$ is equal to the column space of A. Therefore, rank(T) = rank(A).

Theorem 7.2.9:Injective Homomorphisms

Let V, W be vector spaces and $T: V \longrightarrow W$ be a homomorphism. Then T is injective if and only of the null space $\mathcal{N}(T) = \{\mathbf{0}\}.$

Proof. (\Longrightarrow): Suppose T is injective and $\mathbf{x} \in \mathcal{N}(T)$. So, $T(\mathbf{x}) = \mathbf{0}_W = T(\mathbf{0})$. By injectivity of T, $\mathbf{x} = \mathbf{0}$. So, $\mathcal{N}(T) \subseteq \{\mathbf{0}\}$. So, $\mathcal{N}(T) = \{\mathbf{0}\}$ (\Longleftrightarrow): Suppose $\mathcal{N}(T) = \{\mathbf{0}\}$. Let $\mathbf{x}_1, \mathbf{x}_2 \in V$ and $T(\mathbf{x}_1) = T(\mathbf{x}_2)$. Then $T(\mathbf{x}_1 - \mathbf{x}_2) = \mathbf{0}_W$. So, $\mathbf{x}_1 - \mathbf{x}_2 \in \mathcal{N}(T) = \{\mathbf{0}\}$. So, $\mathbf{x}_1 - \mathbf{x}_2 = \mathbf{0}$ and $\mathbf{x}_1 = \mathbf{x}_2$. So, T is injective.

Theorem 7.2.10:Bijective Homomorphisms

Let V,W be a vector spaces and $T:V\longrightarrow W$ be homomorphism. Then the following three statements are equivalent.

- 1 *T* is bijective.
- 2 The null space $\mathcal{N}(T) = \{\mathbf{0}\}\$ and range $\mathcal{R}(T) = W$.
- 3 Nullity $(T) = \{\mathbf{0}\}$ and range $\mathcal{R}(T) = W$.

Proof. Follows from the above.

Isomorphisms

Defintion. Let V, W be a vector spaces. A bijective homomorphism $T: V \longrightarrow W$ is also called isomorphism. When there is such an isomorphism, we say V and W are isomorphic.

Theorem. Let V, W be a vector spaces and $T: V \longrightarrow W$ is an isomorphism. Let $G: W \longrightarrow V$ be the set theoretic inverse of T. Then G is also an isomorphism.

Proof. Skip.

Isomorphisms: Remarks

If V and W, are isomorphic, then properties (Vector-space related) of V translates to properties of W, and conversely. So, they can be treated as "same". For Example: Suppose $T:V\longrightarrow W$ is an isomorphism.

- ▶ If $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V. Then $T(\mathbf{v}_1), \dots, T(\mathbf{v}_n)$ is a basis of W.
- ightharpoonup So, dim $V = \dim W$.

Lemma 7.2.11 (auxilery)

Let V be a vector space and $W \subseteq V$ be a subspace of V. Assume dim $V < \infty$. Then W = V if and only if dim $W = \dim V$. In particular, if V and W are isomorphic, then dim $V = \dim W$.

Proof. It is obvious, if W = V then, dim $W = \dim V$. Now, assume dim $W = \dim V = m$. Let $\mathbf{w}_1, \dots, \mathbf{w}_m$ be a basis of W. If $W \neq V$, there is $\mathbf{v} \in V$ and $\mathbf{v} \notin W$. Then $\mathbf{w}_1, \dots, \mathbf{w}_m, \mathbf{v}$ are linearly independent. This contradicts that dim V = m. So, V = W.

Theorem 7.2.12:Isomorphism and Dimension

Let V, W be vector spaces, with dim $V < \infty$, dim $W < \infty$. Then V and W are isomorphic if and only if dim $V = \dim W$.

Proof. As was established above, if V, W are isomorphic then dim $V = \dim W$. Now, suppose dim $V = \dim W = n$. Let $\mathbf{v}_1, \dots, \mathbf{v}_n$ is a basis of V, and $\mathbf{w}_1, \dots, \mathbf{w}_n$ is a basis of W. Let $T: V \longrightarrow W$ be the homomorphism, such that

$$T(\mathbf{v}_1) = \mathbf{w}_1, \dots, T(\mathbf{v}_n) = \mathbf{w}_n$$

It is easy to see T is an isomorphism.

Corollary 7.2.13:Isomorphisms with \mathbb{R}^n

Suppose V is a vector space with dim V=n. Let $\mathbf{v}_1,\ldots,\mathbf{v}_n$ is a basis of V. Let $\mathbf{e}_1,\ldots,\mathbf{e}_n$ be the standard basis basis of \mathbb{R}^n . Then the homomorphism $f:\mathbb{R}^n\longrightarrow V$, determined by,

$$f(\mathbf{e}_1) = \mathbf{v}_1, \dots, f(\mathbf{e}_n) = \mathbf{v}_n$$

is an isomorphism. We would call this isomorphism the standard isomorphism.

Theorem 7.2.14: Nullity-Rank Theorem

Theorem. Let V, W be vector spaces, with dim $V = m < \infty$, dim $W = n < \infty$. Let $T : V \longrightarrow W$ be a homomorphism. Then

$$Nullity(T) + rank(T) = \dim V = m.$$

Proof. Fix a basis $\mathbf{v}_1, \ldots, \mathbf{v}_m$ of V and a basis $\mathbf{w}_1, \ldots, \mathbf{w}_n$ of W. Let $A := A_T \in \mathbb{M}_{m \times n}(\mathbb{R})$ be the matrix of T, with respect to these bases. Let $A^t \in \mathbb{M}_{n \times m}(\mathbb{R})$ denote the transpose of A.

Continues

Close inspection shows, the diagram

$$\mathbb{R}^{m} \xrightarrow{T_{At}} \mathbb{R}^{n}$$

$$\downarrow \downarrow g$$

$$V \xrightarrow{T} W$$

commutes,

where f, g are the standard isomorphisms. The restrictions of f establishes an isomorphism $f_0 : \mathcal{N}(T_{A^t}) \longrightarrow \mathcal{N}(T)$. So,

$$Nullity(A^t) = \dim \mathcal{N}(T_{A^t}) = \dim \mathcal{N}(T) = Nullity(T).$$

Continued

Likewise, restrictions of g establishes an isomorphism $g_0: \mathcal{R}(T_{A^t}) \longrightarrow \mathcal{R}(T)$. So,

$$rank(A^t) = \dim \mathcal{R}(T_{A^t}) = \dim \mathcal{R}(T) = rank(T).$$

Recall, we proved

$$Nullity(A^t) + rank(A^t) = m \pmod{\text{columns of}} A^t$$

So,

$$Nullity(T) + rank(T) = \dim V = m.$$

Re-Define: Eigenvalues and Eigenvectors

We worked with eigenvalues and eigenvectors for matrices. Now, vector spaces V and linear transformations $T:V\longrightarrow V$, we define eigenvalues and eigenvectors. Let V be a vector space and $T:V\longrightarrow V$ be a Linear Transformation. A scalar $\lambda\in\mathbb{R}$ is said to be a eigenvalue of T, if $T(\mathbf{x})=\lambda\mathbf{x}$ for some $\mathbf{x}\in V$, with $\mathbf{x}\neq\mathbf{0}$. In this case, \mathbf{x} would be called eigenvector, of T, corresponding to λ .

Theorem 7.2.15: Eigen Value in Two Ways

Let V be a vector space and $T:V\longrightarrow V$ be a Linear Transformation. Assume dim $V=n<\infty$. Let $B=\{\mathbf{v}_1,\ldots,\mathbf{v}_n\}$ be a basis of V. Let $A\in\mathbb{M}_{n\times n}(\mathbb{R})$ be the matrix of T, with respect to the basis B, on two sides. That means,

$$\begin{pmatrix} T(\mathbf{v}_1) \\ T(\mathbf{v}_2) \\ \cdots \\ T(\mathbf{v}_n) \end{pmatrix} = A \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \cdots \\ \mathbf{v}_n \end{pmatrix}$$

Also, let $f: \mathbb{R}^n \longrightarrow V$ be the standard isomorphism, and $g: V \longrightarrow \mathbb{R}^n$ be the inverse of f. So, f, g are determined by

$$\begin{cases} f(\mathbf{e}_1) = \mathbf{v}_1, \dots, f(\mathbf{e}_n) = \mathbf{v}_n \\ g(\mathbf{v}_1) = \mathbf{e}_1, \dots, g(\mathbf{v}_n) = \mathbf{e}_n \end{cases}$$
 Then for $\lambda \in \mathbb{R}$

following three conditions are equivalent:

- lacksquare $\lambda \in \mathbb{R}$ is an eigen value of T
- $\lambda \in \mathbb{R}$ is an eigen value of A.
- $\lambda \in \mathbb{R}$ is an eigen value of A^t .

Further, corresponding an eigenvalue λ of T, $\mathbf{x} \in \mathbb{R}^n$ is an eigenvector of A^t if and only if $f(\mathbf{x})$ is an eigenvector of T.

Proof. Proof follows from the following commutative diagram:

$$\mathbb{R}^{n} \xrightarrow{T_{A^{t}}} \mathbb{R}^{n}$$

$$\downarrow^{l} \qquad \downarrow^{f} \qquad \text{More explicitly,}$$

$$V \xrightarrow{T} V$$

$$A^{t}\mathbf{x} = \lambda \mathbf{x} \iff f(A^{t}\mathbf{x}) = f(\lambda \mathbf{x}) \iff T(f(\mathbf{x})) = \lambda f(\mathbf{x}).$$

The proof is complete.

Theorem 7.2.16: Change of Basis

Let V be a vector space, with dim V = n and $T : V \longrightarrow V$ be a linear transformation. Let $\mathcal{B}_1 = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$, $\mathcal{B}_2 = \{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ two bases of V. Since both \mathcal{B}_1 and \mathcal{B}_2 are both bases, the is an invertible matrix P, expressing \mathcal{B}_1 in terms of \mathcal{B}_2 , as follows:

$$\begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_n \end{pmatrix} = \mathbf{P} \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix} \tag{8}$$

▶ Using the basis \mathcal{B}_1 (respectively. \mathcal{B}_2), for both domain and codomain, we have A_T, B_T , as follows:

$$\begin{pmatrix} T(\mathbf{v}_1) \\ T(\mathbf{v}_2) \\ \dots \\ T(\mathbf{v}_n) \end{pmatrix} = A_T \begin{pmatrix} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_n \end{pmatrix}, \begin{pmatrix} T(\mathbf{w}_1) \\ T(\mathbf{w}_2) \\ \dots \\ T(\mathbf{w}_n) \end{pmatrix} = B_T \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix}$$
(9)

These three matrices are related as follows:

$$B_T = P^{-1}A_TP$$

This is called the Change of Basis Formula.

Proof. Rewrite the first equation (9):

$$T \left(\begin{array}{c} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_n \end{array} \right) = \mathbf{A_T} \left(\begin{array}{c} \mathbf{v}_1 \\ \mathbf{v}_2 \\ \dots \\ \mathbf{v}_n \end{array} \right)$$

Using the equation (8), in this,

$$T\left(P\left(\begin{array}{c}\mathbf{w}_1\\\mathbf{w}_2\\\ldots\\\mathbf{w}_n\end{array}\right)\right) = A_T P\left(\begin{array}{c}\mathbf{w}_1\\\mathbf{w}_2\\\ldots\\\mathbf{w}_n\end{array}\right)$$

So,
$$PT \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix} = \mathbf{A}_T P \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix}$$

So,
$$T \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix} = P^{-1} \mathbf{A}_T P \begin{pmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \\ \dots \\ \mathbf{w}_n \end{pmatrix}$$

Comparing the second equation in (9), we have

$$B_T = P^{-1}A_TP$$
.

This establishes the Change of Basis Formula.

