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» In this section we discuss the fundamental properties
of homomorphisms of vector spaces.

» Reminder: We remind ourselves that
homomorphisms of vectors spaces are also called
Linear Maps and Linear Transformations.

We use these three expressions, inter changeably.
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Lemma 7.2.1:The First Property

Property: Suppose V, W are two vector spaces and
T :V — W is a homomorphism. Then T(0,) = 0y,
where 0\ denotes the zero of V' and 0y is the zero of W.

(Notations: When clear from the context, denote zero of the

respective vector space by 0; and drop the subscript V', W
etc.)
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Continued

Proof. We have T(0) = T(0+ 0) = T(0) + T(0).
Add —T(0) on both sides of the equation. We have

7(0) = 7(0) = (7(0) + 7(0)) — 7(0)
So, Ow = T(0) +(T(0)) — T(0) = T(0) + 0w = T(0).
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Theorem 7.2.2:Equivalent Characterization

Theorem 7.2.2: Suppose V, W are two vector spaces and
T :V — W is a function (set theoretic).
Then T is a homomorphism (i. e. Linear map) if and only if

T(ru+sv)=rT(u)+sT(v) YuveVrseR. (1)

Proof. Suppose the condition (1) holds. With r = s =1,
it follows from condition (1)

T(u+v)=T(u)+ T(v) foralluveV.
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Taking s = 0, it follows from condition (1)
T(ru) = T(ru+0v) =rT(u)+0T(v) = rT(u)

So, it is established that T is a homomorphism.

Conversely, suppose T is a homomorphism. We will prove that
condition (1) holds. From the first, then second property of
homomorphism, it follows

T(ru+sv) = T(ru)+ T(sv) =rT(u)+ sT(v)
So, the equation (1) is established.
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Corollary 7.2.3:Linearity, with finite sum

Suppose V, W are two vector spacesand T : V — W is a
homomorphism (i. e. Linear map). Let uy,...,u, € V be n
vectors and ¢, ..., c, € R be n scalars. Then

T(aui+--+cu,)=cT(u)+-+c, T (u,).

Proof. (We use method of induction, to prove this.)
The method has two steps.
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Continued

» (Initialization Step:) When, n =1, we need to prove
T (ciuy) = 1 T (uy). This follows from the second
condition of the definition homomorphisms.

» (Induction Step:) We assume the the proposition is
valid for n — 1 summands (or fewer summands) and
prove it for n summands. By this assumption

T(aup+ -+ crup1) = T (u)+ -+ T (upq).

By n =1 case: T (cou,) =, T (u,)
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Continued

» By first condition of the definition homomorphisms
T (ciug + -+ + cp_1up_1 + cuu,)
=T ((cquy + -+ + cr1up_1) + cou,)
=T (qui+ -+ citup_1) + T (cou,)
=aTl(wm)+-+caT (up1) +cnT (un)

The proof is complete.
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Prelude.

A basis of a vector space V

dictates most of the properties of V.

The next theorem does exactly the same for
Homomorphisms (i. e. linear maps) T :V — W.
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Theorem 7.2.4:Bases and Linear Maps

Let V., W be two vector spaces.
Let {vi,...,v,} be a basis of V and
Wi, ...,wW, € W be m vectors in W.

» (Existence): Then there is a homomorphisms
T :V — W such that

T(vi)=wy, T(va)=wy, -, T(vy)=wn,. (2)

» (Uniqueness): The Equation( 2) determines a unique
homomorphisms T : V — W.
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Continued

Proof.

» First, wedefine T:V — W. Letxec V.
By property of bases, there are scalars
c1,...,Ch € R, such that

X =CV1+ CVo+ -+ CVp

Define T(x) = ciwy + ooWp + -+ - + ;W

Given x € V, ¢1,..., ¢y are uniquely determined by x.
So, T(x) is well defined.

(One needs to justify so called "well defined-ness”,
whenever something is defined.)
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So, T is already defines as a set theoretic map.

We need to show T is a homomorphism. Let x € V be as
above and y € V be another vector. There are scalars
di,...,d, € R, such that

(y = divi + -+ dpv,. By definition,
T(y) = diwi + -+ + dpwp,
xty=(a+d)vi+(a+d)va+- -+ (cm+ dn)Vm
ByDefinition, T(x +y) = (a1 + di)wy + - - - + (¢, + d)W,,
=(cawy+ -+ + cpWp) + (dhwy + -+ - + dyWp,)

[ = T(x)+ T(y).

The first (the additive) property of homomorphism is checked.
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Now, we prove the T satisfies the second condition:
P> Let x € V be as above and r € R be a scalars. Then

rx = (re vy + -+ -+ (rcp)Vm

By Definition, T(rx) = (rci)wy + - - - + (rcm)wp,

= (ra)wi++- -+ (rem)Wm = r(awy + 4+ 4 cmWp)
= rT(x)

The second property of homomorphism is checked. So, it
is established that T is a homomorphism
(i. e. Existence of T is established.).
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Now we prove uniqueness part. Let Ty, To : V — W be two
homomorphism, satisfying Equation (2), meaning

{ Tl (Vl) = W; T1 (V2) = Wy, et Tl (Vm)
T2 (Vl) = W; T2 (V2) = Wy, LRI T2 (Vm) = Wp,

For all x € V/, we need to prove T;(x) = T»(x).
As before x € V, we can write

X =CVi+ OV + -+ Vv, for some ci,..., ¢, € R.
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Continued

Since T1, T, : V — W are homomorphism,

Tl (X) = T1 (Vl) + G Tl (Vz) + -t CmTl (Vm)
= W1+ OWo + -+ CWpy

Likewise,

T2 (X) = T2 (V]_) + () T2 (V2) —+ 4 CmT2 (Vm)
= Ci{W1 + OOW3 + - - - + CnWp,

So, Ty (x) = T2 (x). This completes the proof of Part 2
(the uniqueness part).
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Example 7.2.1

o
o O
M
7
w
—~
w
~

1
e — 0 , € = 1 ,83 =

o
o
—

1 -1 0
Vi = 1 , Vo = 1 , V3 = -1 €R3
1 1 1

Then vy, v,, v forms a basis of R3 (we do not prove this)
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Continued

Let T : R® — R? be the homomorphism defined by

rw=(1) Te=() Te=( %)

Compute T (e1), T (e2), T (e3). More generally, compute
a
T| b

c
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Solution: Write

as linear combination of
e, = avy + BV2 + Yv3 Vi,Vo, V3
a,B,7€R

1 -1 0
=11 1 -1
1 1 1

1

1

«
p
g
2 1
1
=20 2 1
0 -2 2
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(%
B — -1
g

— e =

IS,
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0 .25

0 -5
.25

So, e, = ( Vi Vo V3 ) .25 = .25v; + .25v, — bvs
-5

So T (ex) =.25(T (v1) +.25T (v2)) — .5T (v3)

() eas( 1) s %)= (0)
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@ 1
So 6 = A_163 = Z -2
¥ 0 -2

So, es=(vi v» vz )| .25 | =.25v;+ .25v5) + 5v3
-5

So T (e3) =.25(T (v1) +.25T (v2)) + .57 (vs3)

,25(})+.25(11)+.5(31)(8)
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Finally,

o

= ae; -+ be2 —+ ces.

So,

T| b | =aT(e1)+ bT (ep)+cT (e3)

(9]

0 0 a
—l—b1+c0—b

Il
J\§)
O =
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Example 7.2.2

Let e, €;,e3 € R® be the standard basis of R3, as in (3) and
Let
1 -1 0
vV = 1 , Vo = 1 , V3 = -1 €R3
1 1 1
Then vy, vy, vs forms a basis of R® (we do not prove this)
Let T : R® — R* be the homomorphism defined by
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Continued

Compute T (e1), T (es), T (e3). More generally, compute
a
T| b
c
Solution: Steps are very similar to the above problem. We
will write eq, e;, e3, as linear combination of vy, v,, v3. First,
write e; = avy + fva + Yvs.
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In matrix form:

Il
e
—
|
=
=2 ® L
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(6%
5 _ 1
f‘)/

= 7e1:

ENJS.
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Continued

Now compute T (e;). As before , write e, = av; + vy + Y3

1 0 .25
1 1] = .25
2 0 -5

So, e, = ( Vi Vo V3 ) 25 = .25v; + .25v, — 5v;
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Now compute T (e3). As before , write e3 = av; + [va + Y3

1 0 .25
1 0| =1 25
2 1 5

@ 1
So 6 = A_163 = Z -2
”

.25
So, ez = ( Vi Vo V3 ) .25 = .25v; + .25v, + bvg
-5
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-1 1 0 0
-1 -1 1 0
=25 [+ T+ =] )

3 1 0 1
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Continued

Finally, b = ae; + be2 —+ ces.

L

SO, T b :aT(e1)+bT(e2)+cT(e3)
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Exercises 1

Let e, €;,e3 € R® be the standard basis of R3, as in (3)

1 1 1
2

and vi=| =1 |, vo=| 1 |,v3= —% e R?
1 2 -1

Then vy, Vo, vs form a basis of R (need not check). Let
T : R® — R be be the homomorphism, defined by

T(vi)=vwvi, T(v2)=0, T(vz)=0. Compute

a
T (e1), T (e2), T (e3), and in particular T | b
c
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Exercise 2

Let P>(R) be the vector space of all polynomials f with
deg(f) < 2. Then

p1(x) = L+x+x?, pa(x) = x+x2,p3(x) = x* is a basis of Po(R).

Define the homomorphism T : P>(R) — M (R) by

T(p1)=(1 (1)) T(pz)Z((l) (1)) T(p1)=<(1) 8)

Compute T(1), T(x), T(x?) and in general T(a+ bx + cx?).
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Preview

Recall, given a matrix A € M, ,(R), there is a an
homomorphism

T:R" — R™ defined by T (x) =Ax VxeR"

We demonstrate that, any homomorphism 7 : V — W of
vectors spaces, with finite dimension, are determined by
matrices, in some sense to be elaborated.
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Theorem 7.2.5:Matrices to Homomorphisms

Let V., W be two vector spaces.

» Let vi,vp,...,v, € V be a basis of V and
Wi, Wy, ..., W, € W be elements in W.

> Let
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Continues:Matrix A to Tx

Then there is a homomorphism T, : V — W such that
Ta(vi) = anwy + appWo + - -+ + a1,W,
Ta(v2) = anwi + anwy + -+ + az,wW, (4)

7—A (Vm) = amW1 + ameWo + - -+ + ampW,

In matrix notation,

Ta (Vl) di1 d12 - din Wi
Ta (Vz) _ a1 dx -+ a2 W) (5)
TA (Vm) dml dm2 " dmn W,
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Continues

Proof. It follows from Theorem 7.2.4 and equation (4) and
theorem above. [
We Remark:

» The notation T, was chosen, with subscript A, to show
its dependence on A, and for future reference.

» T, also, depend on the basis {vi,...,v,} C V
and elements {wy,...,w, € W}. That means,
if we change the basis v;, or elements {w;} the
homomorphism T4 we get will be different.
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» Suppose V =R™ and W =R".
Let {vi,...,v, € V} be the standard basis of V = R"™
meaning v; = e; € R”
and {wy,...,w, € W} be the standard basis of W = R"
meaning w; = e; € R"”
(as in Equation 3). Then

Ta(x)=A'x  VxeR"

This example was discussed before.

> A converse of the above is also valid as follows.

Satya Mandal Chapter 7 Linear Transformations § 7.2 Properties of Homom:



Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Theorem 7.2.6:Homomorphisms to Matrices

Let V, W be two vector spaces. Let vi,vy,...,v,, € V be a
basis of V and wy,ws,...,w, € W be basis in W.

Let T :V — W be a homomorphism. Since, {w;} is a basis
of W, we can back track the above steps and write uniquely:

T (Vl) = a11Wq + a1poWo + - - - + a1,W,
T (v2) = axywy + anWy + -+ + a2,W, (6)

T (Vm) = amiW1 + @amW2 + -+ - + ampW,

with unique a;; € R.
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Continued: T to Matrix

This way we get a well defined matrix

d dx - a2
Ar = ! (7)
dmi dm2 - dmn

We remark, the At depends on the choice of bases of V' and
of W, as above.
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Theorem 7.2.7:The Correspondence

Let V, W be two vector spaces. Let vi,v,,...,v,, be a basis
of V and wy,wy, ..., w, be basisin W. Let L(V, W) be the
set of all homomorphisms V — W.

» Define ¢ : L(V, W) — Mpun(R) by o(T) = Ar, where
At € M,,»,(R) is the matrix is as in Theorem 7.2.6.
Then ¢ is a well defined bijective correspondence.

» Define ¢ : My n(R) — L(V, W) by ¢)(A) = Ta, where
Ta€ L(V,W)is asin Theorem 7.2.5. Then ¢ and ¢ are
the inverses of each other.
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Proof. It follows from the above discussions on the definitions
of A7 and T4. We skip the details of the proof. [ |

Remark. We comment that A+ and T, depend on the
choices of bases {v;} of V and {w;} of W. Hence ¢ and ¢
would also do the same.
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Definitions and Theorem 7.2.8

Definitions. Let V, W be two vector spaces and
T :V — W is a homomorphism. Then define

N(T)={veV:T(v)=0y}.
{R(T):{WE W :w = T(v) for some v e V}.

» Then N(T) is a subspace of V. This subspace N'(T) is
called the Null Space of T.

» Then R(T) is a subspace of W. This subspace R(T) is
called the Range of T.

Proof. Skip
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Continued

As before T : V — W be a homomorphism. Also, define
» Nullity(T) =dimN(T).
» rank(T)=dimR(T)
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Motivating Example

Let A€ M,,xn(R) and T = T4 : R™ — R" be as above.

» Then NV (T) = N(A). In words, the Null space of T and
Null space of A are same.
Therefore, Nullity(T) = Nullity(A").

» Also, the range R(T) is equal to the column space of A.
Therefore, rank(T) = rank(A).

Satya Mandal Chapter 7 Linear Transformations § 7.2 Properties of Homom:



Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Theorem 7.2.9:Injective Homomorphisms

Let V, W be vector spacesand T : V — W be a
homomorphism. Then T is injective if and only of the null
space N'(T) = {0}.

Proof. (=>): Suppose T is injective and x € N(T). So,

T (x) =0y = T (0). By injectivity of T, x =0. So,

N(T) C{0}. So, N(T) = {0}

(«<=): Suppose N(T) = {0}. Let x1,x, € V and

T (x1) = T (x2). Then T (x; —x2) = O0w. So,

x1 — X2 € N(T) ={0}. So, x; —x2 =0 and x; = x2. So, T
is injective. |
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Theorem 7.2.10:Bijective Homomorphisms

Let V, W be a vector spaces and T : V — W be
homomorphism. Then the following three statements are

equivalent.
1 T is bijective.
2 The null space N(T) = {0} and range R(T) = W.
3 Nullity(T) = {0} and range R(T) = W.

Proof. Follows from the above. n
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Isomorphisms

Defintion. Let V', W be a vector spaces. A bijective
homomorphism T : V — W is also called isomorphism.
When there is such an isomorphism, we say V and W are
isomorphic.

Theorem. Let V., W be a vector spacesand T :V — W'is
an isomorphism. Let G : W — V be the set theoretic inverse
of T. Then G is also an isomorphism.

Proof. Skip.
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Isomorphisms: Remarks

If V and W, are isomorphic, then properties (Vector-space
related) of V translates to properties of W, and conversely.
So, they can be treated as "same”. For Example:
Suppose T : V — W is an isomorphism.
» Ifvi,...,v,is a basis of V. Then T (v1),..., T (v,)is a
basis of W.

» So, dimV =dim W.
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Lemma 7.2.11 (auxilery)

Let V be a vector space and W C V be a subspace of V.
Assume dim V < co. Then W = V if and only if

dim W = dim V. In particular, if V and W are isomorphic,
then dimV = dim W.

Proof. It is obvious, if W = V then, dm W = dim V.

Now, assume dim W =dimV = m. Let wy,...,w,, be a
basis of W. If W # V/, thereisv € V and v ¢ W. Then
W1,...,W,,V are linearly independent. This contradicts that
dmV =m. So, V= W. [ |
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Theorem 7.2.12:Isomorphism and Dimension

Let V, W be vector spaces, with dim V < oo, dim W < oo.
Then V and W are isomorphic if and only if dim V = dim W.

Proof. As was established above, if V, W are isomorphic
then dim V = dim W. Now, suppose dim V =dim W = n.
Let vi,...,v, is a basis of V, and wy,...,w, is a basis of W.
Let T : V — W be the homomorphism, such that

T(vi)=wq,...., T(v,) =w,

It is easy to see T is an isomorphism. [ |
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Corollary 7.2.13:Isomorphisms with R”

Suppose V is a vector space with dimV = n. Let vy,...,v, is
a basis of V. Let ey, ..., e, be the standard basis basis of R".
Then the homomorphism f : R” — V/, determined by,

f(el):vl,...,f(e,,):v,,

is an isomorphism. We would call this isomorphism the
standard isomorphism.
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Linear Maps: Other Equivalent Ways
Homomorphisms:By a Basis
Examples

Exercise

Homomorphisms and Matrices

Properties of Homomorphisms

Null Space, Range, and Isomorphisms

Theorem 7.2.14:Nullity-Rank Theorem

Theorem. Let V', W be vector spaces, with
dmV =m<oo,dmW =n<oo. Let T:V — W bea
homomorphism. Then

Nullity(T) + rank(T) = dim V = m.

Proof. Fix a basis vq,...,v,, of V and a basis wy,...,w, of
W. Let A:= At € M,,,«»(R) be the matrix of T, with respect
to these bases. Let A* € M, n(IR) denote the transpose of A.
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Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Continues

Close inspection shows, the diagram
Rm A Rn
flz zjg commutes,

V—s W
T

where f, g are the standard isomorphisms. The restrictions of
f establishes an isomorphism fy : N(Ta:) — N(T). So,

Nullity (A*) = dim N (Ta:) = dim N(T) = Nullity(T).

Satya Mandal Chapter 7 Linear Transformations § 7.2 Properties of Homom:
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Homomorphisms and Matrices

Null Space, Range, and Isomorphisms

Properties of Homomorphisms

Continued

Likewise, restrictions of g establishes an isomorphism
8o : R(TAt) — R(T) So,

rank(A") = dimR(Ta) = dim R(T) = rank(T).
Recall, we proved
Nullity (A*) + rank(AY) = m  (no of columns of) A°
So,
Nullity(T) + rank(T) = dim V = m.
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Eigenvalues and Eigenvectors

Re-Define: Eigenvalues and Eigenvectors

We worked with eigenvalues and eigenvectors for matrices.
Now, vector spaces V' and linear transformations

T : V — V, we define eigenvalues and eigenvectors.

Let V be a vector space and T : V — V be a Linear
Transformation. A scalar A € R is said to be a eigenvalue of
T, if T (x) = A\x for some x € V, with x # 0. In this case, x
would be called eigenvector, of T, corresponding to .
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Eigenvalues and Eigenvectors

Theorem 7.2.15:Eigen Value in Two Ways

Let V be a vector space and T : V — V be a Linear
Transformation. Assume dimV = n < co. Let

B = {vy,...,v,} be a basis of V. Let A € M,,,(R) be the
matrix of T, with respect to the basis B, on two sides. That

means,
T(Vl) Vi
T(V2) — A V7
T(v,) v,
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Eigenvalues and Eigenvectors

Continued

Also, let f : R” — V be the standard isomorphism, and
g : V —> R” be the inverse of f. So, f, g are determined by

{f(el)zvl,---,f(en):"n Then for A € R
g(Vl):e17"'7g(v"):e"

following three conditions are equivalent:
» )\ e Ris an eigen value of T
» X\ € Ris an eigen value of A.
» )\ € Ris an eigen value of A’
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Eigenvalues and Eigenvectors

Continued

Further, corresponding an eigenvalue A of T, x € R" is an
eigenvector of A' if and only if f(x) is an eigenvector of T.
Proof. Proof follows from the following commutative diagram:

R"AR”

f Lz zl f More explicitly,

Alx = Mx <= f (A'x) = f (\x) < T (f(x)) = M (x).
The proof is complete. [ |
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Change of Bases

Theorem 7.2.16:Change of Basis

Let V be a vector space, with dimV =nand T : V — V be
a linear transformation. Let By = {vy,...,v,},

By = {wi,...,w,} two bases of V.

Since both B; and B, are both bases, the is an invertible
matrix P, expressing By in terms of B,, as follows:

Vi W1
o (8)
Vn Wn
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Change of Bases

Continued

» Using the basis B; (respectively. BBy) , for both domain
and codomain, we have Ar, Bt, as follows:

T (Vl) Vi T (Wl) W1
T (V2) _ AT Vo ’ T (W2) _ BT W»o
T (vn) v, T (w,) w,
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Change of Bases

Continued

These three matrices are related as follows:
Br = P'ArP

This is called the Change of Basis Formula.
Proof. Rewrite the first equation (9):

Vi Vi

Vo Vo
T = At

Vi Vp
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Change of Bases

Continued

Using the equation (8), in this,

Wy W1
T|p| ™ —ArP|
w, W,
W1 W1
So, PT| ™2 | =ap|[ ™2
W, Whn
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Change of Bases

Continued

W, W,

W» — W»o
So, T = PlALP

Wn Wn

Comparing the second equation in (9), we have
Br = P7'A7P.

This establishes the Change of Basis Formula. [ |
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