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Equations from §1.1

Equations from §1.1

We recall the equations discussed in §1.1.
» Falling Object Models:

m%t’ =mg — v with m = 10,
105, =9.8—2v g=98 v=.2 (1)
OR % =9.8—2v
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Equations from §1.1

Continued

» Population Growth Model:

% =rp neglect other gains 2)
% = 5p—450 r =.5, other gain 450

» General First Order Equations:

d
d_); = f(t,y) where f is a function of t,y. (3)
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Solve the Population Growth Model
Initial Value

More General such problems
Examples

§1.2 Solving some DE

The equations in §1.1 have been fairly simple, in the sense:
» All the DEs are of the form (3): % = f(t,y).
It involves only 1°* derivative;
and no higher order derivatives.
For these DEs (1, 2), the right side f(t,y) are linear.
» Solving such DEs (3), mainly, involves
nothing more than revisiting antiderivatives.

v
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Solve the Population Growth Model
. Initial Value
§1.2 Solving some DE More General such problems

Examples

Solving the Growth Model

» We solve the population growth model ((1):

dp dp
S Bp—450 = — =
P 5p — 450

& dt (4)

> [ 45p‘i”450 = [ dt + C, where C is an arbitrary constant.
» Substituting u = .5p — 450 we get

du

; :,5/dt+C Or Injul=5t+C

|.5p — 450] = e5C = ce® Or p =900+ ce®

where ¢ := £e¢ > 0 is an arbitrary constant.
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Solve the Population Growth Model
Initial Value

More General such problems
Examples

§1.2 Solving some DE

HIEIRYZINE

» p =900+ ce® is a solution of (4), for all values of c.
This would be called the General solution

» In the absence of further information,
we cannot determine the value of c.

» Such extra information is provided, often, by giving
the population size p(ty) at a particular time t,.
For example, it may be given that p(0) = 1000.
Such information, is called an initial condition.
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Solve the Population Growth Model
Initial Value

More General such problems
Examples

§1.2 Solving some DE

» In case, p(0) = 1000, we have
1000 = p(0) = 900 + ¢, ¢ = 100

Finally, our particular solution is p = 900 + 100e->t

» In the next frame,
compare the direction fields of the DE (1),
with this solution p = 900 4 100e-°t.
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§1.2 Solving some DE
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§1.2 Solving some DE

Solving such general equations

More generally, consider the initial value problem:

dy = 3y —
{ )(/ﬁ(O) ;y b a,b are constants, and  (5)
= Yo

Yo is (an) initial value of y, at time t = 0.
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Solve the Population Growth Model
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§1.2 Solving some DE

continued

(Trivial cases):

» If a = 0 then the equation is rewritten as

dy =_b
{ dt Solution : exercise
y(0) =y

> Assume a # 0 and ay — b =0 then, y = y(t) = 2.
Then there is nothing to solve. We have

(B0 25 (wowson-?)
¢ nswer:y =y, = —
y(O) = Yo y Yo 3
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Solve the Population Growth Model
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§1.2 Solving some DE

continued

(The Non-Trivial case):
dy — ay —
{ 2 =ay—b { a#0, (6)
y(0) =x ay —b#0

> We have % = dt. Sof dy = [dt+ C,
where C i |s an arb|trary constant So,

dy
y__

—a/dt+C:>|n

b
y——’:at—l—C
a
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Solve the Population Growth Model
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§1.2 Solving some DE

continued

» Taking exponential: The general solution of (6) is:

y — 13’ = cet where ¢ = +e® is also arbitrary
» ¢ = 0 corresponds to the equilibrium solution y = ‘3’.
. e . . b o

» Using the initial values, we have y(0) = yo: yo — 2 = ¢

» So, the final solution of the initial value problem (6) is:

y—:+[y—ﬂe“ (7)
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§1.2 Solving some DE

Standard Examples

Following are some of the standard examples:

» Mass of decaying mass (usually radio active).
The Population Growth Model above,
the amortization of an interest paying account.
These are analogous.

» Motion of an ejected or falling body.
We discuss such examples subsequently.
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§1.2 Solving some DE

Example 1: Decaying Mass

Statement: Let Q(t) denote the mass of some radio-active
substance, at time t. It is known that such substances
disintegrates at a rate proportional to the current mass Q(t).
Write down a model, for this phenomenon.

» The rate of disintegration, at time t would be aQ

dt -
According to the above model statement,

99 is proportional to Q(t).

> So, the model is €& = —rQ(t), for some constant r > 0.
» By (6) and solution 7, with b =0,a = —r, we have

Q(t) = Q(0)e™"
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Solve the Population Growth Model
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§1.2 Solving some DE

Continued

Statement: Now suppose initial mass is 1000 grams,

which reduces to 900 grams in 10 hours. Compute r.
: Q(0) = 1000 gram
| 4
We are given { Q(lO) — 900 , at hour t.
> So, we have

In(.9)
10

900 = 1000e~ 10", r=— =.0105

» So, Q(t) = 1000e0105t,
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Solve the Population Growth Model

. Initial Value
1.2 Solving some DE
§ g More General such problems

Examples

Example 2: Motion of a Falling Body

Statement: A missile has a vertical and a horizontal motion.
For now, we only consider the vertical motion.
Suppose such a missile of mass 1000 kg, is projected and
the vertical drag is proportional to square of the velocity.
We formulate the model for vertical velocity.
» Let v(t) denote the vertical velocity of the missile,
at time t.
» The model of the falling body DE (1) was modified,
by changing model on drag. By the model statement, the
drag= yv2.
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Continued

» So, the new model DE is

d
m= = mg =’ (8)
» Recall g = 9.81 meter/s?. With m = 1000 kg.
So, we have J
v 1
Y981 — 2
gt~ 08l 10007 9)
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§1.2 Solving some DE

Continued

Statement: You recorded,

the vertical acceleration % =0, reduces to zero,

when velocity v(t) = 100 meter/sec.
We compute the drag constant +.

> Substituting 2 =0,v =0, in (9),

1
0=09.81— —~(100?).
To0g 7 (100

» So, v = .981 and the model is

dv 981 981
— =081 — 2 =
gt~ 28~ 1000 T 1000

(10000 — v?)
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§1.2 Solving some DE

Continued

» We separate variables (see §2.3):

/ dv __.981/dt+c .
v2 — 10000 1000

/ 1 1 1\ %l
200 \v—100 v+100/)% " "1000 " €

L n
200

—

v-100] 981
v+100| 1000
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Solve the Population Growth Model
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More General such problems
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§1.2 Solving some DE

Continued

v — 100

S T100l = Ce % with C=e"*>0
v

» So,

R

_ _ C
v+ 100 o<t

» Substituting v(0) = 0 we have C = —1
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Solve the Population Growth Model
. Initial Value

1.2 Solving some DE
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Examples

Continued

» So, the solution is given by

v — 100 o —.1962¢
v 1100 € —

v(t) = 100 — (v + 100)e 190*

» Next Level: Let h = h(t) denote the vertical distance of
the missile, from the point of ejection, at time t. So,

dh
=V =v(t)=100—(v+ 100)e19%%

This equation can be solved to determine
the height h(t), of the missile, at time t.
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§1.2 Solving some DE

Example 3: Concentration

Statement: A water reservoir contains 10° gallons of water.
The water is not acceptable for human consumption, due the
level of chemicals in the water. The concentration of this
chemicals is .01 gm/gallon. Pure water is added to the pond
at the rate of 1,000 gallons/h. The well mixed water drains
out of the pond at the same rate . Model the total quantity of
chemicals in the pond and determine the concentration of the
chemicals after one year.
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§1.2 Solving some DE

Continued

Solution:
» Let Q(t) =quatity of the chemical in the pond, at time t.
» So, Q(0) = .01 % 10° = 10* gm.
» Part a): The rate of change
dQ Q(r) Q1)
g = 1000 S0 = T gs

» We can use the general solution solution (7) or rework it
out. | will rework. We have

dQ dt—l—c ci tant
— =— | — is a constant.
Q 103
t
[ = — .
n Q(t) 103+C
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§1.2 Solving some DE

Continued

So, Q(t)= Ce"1® C >0 isa constant
Now, Q(0)=10* = 10* = C.
So, the solution is Q(t) = 10%e 10
Finally, after one year, t = 365 % 24 = 8760. So,

8760

Q(1 year) = Q(8760) = 10%e 103 = 10%e 8760
So, the concentration is

Q(1 year)  10%e 870
10 106

per gallon. This is near zero.
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§1.3 Classification of DE

§1.3 Classification based on no of ind. variables

Two broad classifications of DEs are as follows:

» When a DE involves only a single independent variable x
(or t), then it is called an Ordinary DE (also called ODE).
Chapter 2, 3 would be on ODE.

» When a DE involves more than one independent variables
X1, X2, - - -, Xn, then it is called a Partial DE (also called
PDE). PDEs will not be covered in this course.
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§1.3 Classification of DE

Classification based on number of unknown

variables

» There may only be one unknown dependent variable y, to
be determined. As in linear algebra, only one DE (plus
initial value) is needed to determine y.

» There may also be more than one unknown dependent
variables y1, y>, ..., ¥m, to be determined. As in linear
algebra, a system of m (independent, in some sense) DE
(plus initial values) are needed to determine
Y1, Y2, -, ¥m. They will be called a System of DEs.

We will consider such systems in chapter 7.
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§1.3 Classification of DE

Based on Order of derivatives

» DEs can be classified based on
the highest order of derivation present.
We will cover
» First order DE (Chapter 2)
» Second order DE (Chapter 3)
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§1.3 Classification of DE

Linearity and non-linearity

» An ODE of order n is called linear, if it looks like

d"y
dtn

dn—ly
dtnfl

.. an_l(t)% + an(t)y = g(t)

ao(t) + a1 (t)
This is also written as:

ao(t)y™ +ar(t)y" D+ aa () + an(t)y = g(1)

a;(t), g(t) are functions of the independent variable t.

Satya Mandal Chapter | Introduction §1.2 Preliminaries and Classification



	Equations from §1.1
	§1.2 Solving some DE
	Solve the Population Growth Model
	Initial Value
	More General such problems
	Examples

	§1.3 Classification of DE

