Chapter 5: System of 1^{st} -Order Linear ODE §5.8 Nonhomogeneous Linear Systems

Satya Mandal

U. Kansas

Arrowtic K-Theory

Fall 2025

Nonhomogeneous Linear Systems

Finally, we consider Nonhomogeneous Linear Systems.

▶ A nonhomogeneous linear system can be written as:

$$y' = P(t)y + g(t)$$
 (1)

where $P(t) = (p_{ij}(t))$ is an $n \times n$ -matrix,

where
$$\mathsf{P}(t) = (p_{ij}(t))$$
 is an $n \times n$ -matrix $\mathsf{g}(t) = \begin{pmatrix} g_1(t) \\ g_2(t) \\ \dots \\ g_n(t) \end{pmatrix}$ is a column matrix.

 \blacktriangleright We assume that $p_{ij}(t), g_i(t)$ are all continuous functions on an open interval $I: \alpha < t < \beta$.

General Solutions

▶ Corresponding to (1), we have the homogeneous system:

$$y' = P(t)y \tag{2}$$

► As in Chapter 3, 4, and in Linear Algebra, a general solution of a non homogeneous system (1) has the form:

$$y = Y + y_c$$
 where (3)

- ightharpoonup Y = Y(t) is a particular solution of the system (1),
- \triangleright y_c is the general solution of the homogeneous system (2), which can be computed using methods in §5.5, 5.6, 5.7.

Methods to Find a particular solution Y

The following are some of the possible methods to compute a particular solution Y:

- Diagonalization.
- Method of Undetermined coefficients.
- Variation of parameters.
- ► Laplace transforms (extension of chapter 6)

We would only discuss the first one. Further, we would only consider the case, when P(t) = A is a constant matrix.

Diagonalizable system

Consider nonhomogeneous systems:

with constant coefficients
$$y' = Ay + g(t)$$
 (4)

where A is an $n \times n$ -matrix with constant entries, g(t) is as in (1). The corresponding homogeneous system:

$$y' = Ay \tag{5}$$

Sometimes, the matrix A would be diagonalizable.
This means, there is an invertible matrix T such that

$$\mathsf{T}^{-1}\mathsf{A}\mathsf{T} = \begin{pmatrix} r_1 & 0 & \cdots & 0 \\ 0 & r_2 & \cdots & 0 \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & r_n \end{pmatrix} =: \mathsf{D} \tag{6}$$

is a diagonal matrix. This would be the case when A has a set of n linearly independent eigen VECTORS.

- ► It also follows AT = TD
- ▶ In this case, $r_1, r_2, ..., r_n$ would be the eigenvalues of A and i^{th} -column of T would be the eigenvector for r_i .

Most importantly, we change variables:

$$z = \mathsf{T}^{-1}\mathsf{y} \Longrightarrow z' = \mathsf{T}^{-1}\mathsf{y}' = \mathsf{T}^{-1}(\mathsf{A}\mathsf{y} + \mathsf{g}(t)) \Longrightarrow$$

$$z' = \mathsf{T}^{-1}\mathsf{A}\mathsf{y} + \mathsf{T}^{-1}\mathsf{g}(t) = \mathsf{D}\mathsf{T}^{-1}\mathsf{y} + \mathsf{h}(t) = \mathsf{D}\mathsf{z} + \mathsf{h}(t)$$
 where $\mathsf{h}(t) := \mathsf{T}^{-1}\mathsf{g}(t)$ is a column vector of functions.

lt follows $z' = Dz + h(t) \Longrightarrow$

$$\begin{pmatrix} z_1' \\ z_2' \\ \dots \\ z_n' \end{pmatrix} = \begin{pmatrix} r_1 z_1 + h_2(t) \\ r_2 z_2 + h_2(t) \\ \dots \\ r_n z_n + h_n(t) \end{pmatrix}$$
(7)

► For future reference:

$$\begin{pmatrix} z'_{1} - r_{1}z_{1} \\ z'_{2} - r_{2}z_{2} \\ \dots \\ z'_{n} - r_{n}z_{n} \end{pmatrix} = \mathsf{T}^{-1}\mathsf{g}(t) = \begin{pmatrix} h_{1}(t) \\ h_{2}(t) \\ \dots \\ h_{n}(t) \end{pmatrix}$$
(8)

So, for i = 1, 2, ..., n, $x'_i = r_i z_i + h_i(t)$ are 1^{st} -order Linear ODE in one variable (see §2.1 or the Appendix below).

▶ By see (14) below (from §2.1) the general solution for z_i :

$$z_i = e^{r_i t} \left[\int e^{-r_i t} h_i(t) + c_i \right] = e^{r_i t} \left[\int_{t_0}^t e^{-r_i s} h_i(s) + c_i \right]$$

▶ We need only a solution of (4). So, take $c_i = 0$:

$$z_i = e^{r_i t} \left[\int e^{-r_i t} h_i(t) \right] \tag{9}$$

- ► Clarification: The constant c_i , will get absorbed in y_c term of the general solution $y = Y + y_c$ of (4).
- Now, to solve (4), compute y = Tz.

Compute T

- Compute the eigenvalues r_1, r_2, \ldots, r_n by solving |A rI| = 0. Some of these r_i may repeat. (Write them in increasing order.)
- Assume A has a set of *n* linearly independent eigenvectors $\xi_1, \xi_2, \dots, \xi_n$.
- \blacktriangleright Let, $\mathsf{T} = (\xi_1 \ \xi_2 \ \cdots \ \xi_n)$.
- ightharpoonup Compute T⁻¹ (Use TI-84, unless it gives clumsy output).
- ▶ We would be considering problems, with n = 2, 3. We would also avoid complex eigenvalues.

Example 1

Find the general solution of

$$y' = \begin{pmatrix} 2 & 2 \\ -2 & -3 \end{pmatrix} y + \begin{pmatrix} -e^t \\ -e^{-t} \end{pmatrix}$$
 (10)

► The corresponding homogeneous equation

$$y' = \begin{pmatrix} 2 & 2 \\ -2 & -3 \end{pmatrix} y \tag{11}$$

- ➤ We can use the above method, only if there are 2 linearly independent eigenvectors. In particular, if all the eigenvalues are distinct.
- ► Eigenvalues of A, are given by

$$\begin{vmatrix} 2-r & 2 \\ -2 & -3-r \end{vmatrix} = 0 \Longrightarrow \begin{cases} (2-r)(-3-r) + 4 = 0 \\ \text{So, } r = -2, 1 \end{cases}$$

► Since two eigenvalues are distinct, there will be two linearly independent eigenvectors.

Eigenvectors

▶ Eigenvectors for r = -2 is given by $(A - rI)\xi = 0$:

$$\begin{pmatrix} 2+2 & 2 \\ -2 & -3+2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 4 & 2 \\ -2 & -1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longrightarrow$$
$$\begin{cases} 0=0 \\ 2\xi_1 + \xi_2 = 0 \end{cases} \text{ With } \xi_1 = 1, \quad \xi^{(1)} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$$

is an eigenvector for r = -2.

► Corresponding solution for the homogeneous ODE (11):

$$y^{(1)} = \xi^{(1)}e^{rt} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}e^{-2t}$$

Eigenvectors

▶ Eigenvectors for r = 1 is given by $(A - rI)\xi = 0$:

$$\begin{pmatrix} 2-1 & 2 \\ -2 & -3-1 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \Longrightarrow$$
$$\begin{cases} 0=0 \\ \xi_1+2\xi_2=0 \end{cases} \quad \text{With } \xi_2=1, \quad \xi^{(2)}=\begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

is an eigenvector for r=1.

► Corresponding solution for the homogeneous ODE (11):

$$\mathbf{y}^{(2)} = \xi^{(2)} \mathbf{e}^{rt} = \left(\begin{array}{c} -2\\ 1 \end{array}\right) \mathbf{e}^{t}$$

The Matrix T

► The matrix T is

$$\mathsf{T} = \left(\begin{array}{cc} \xi^{(1)} & \xi^{(2)} \end{array}\right) = \left(\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right)$$

Also

$$T^{-1} = \frac{1}{|T|} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \frac{1}{-3} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} \end{pmatrix}$$

Change variable $z = T^{-1}y$

▶ We change variables $z = T^{-1}y$. By (8)

$$\begin{pmatrix} z_1' - r_1 z_1 \\ z_2' - r_2 z_1 \end{pmatrix} = \mathsf{T}^{-1} \mathsf{g}(t) = \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} \end{pmatrix} \mathsf{g}(t)$$
$$\begin{pmatrix} z_1' + 2z_1 \\ z_2' - z_2 \end{pmatrix} = \begin{pmatrix} -\frac{1}{3} & -\frac{2}{3} \\ -\frac{2}{3} & -\frac{1}{3} \end{pmatrix} \begin{pmatrix} -e^t \\ -e^{-t} \end{pmatrix}$$
$$\begin{pmatrix} z_1' + 2z_1 \\ z_2' - z_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{3}e^t + \frac{2}{3}e^{-t} \\ \frac{2}{3}e^t + \frac{1}{3}e^{-t} \end{pmatrix}$$

Solve for z_1

- ► We have $z_1' + 2z_1 = \frac{1}{3}e^t + \frac{2}{3}e^{-t}$
- ► The IF $\mu(t) = \exp(\int 2dt) = e^{2t}$
- ▶ By (14) a solution for y_1 :

$$egin{aligned} z_1 &= rac{1}{\mu(t)} \left[\int \mu(t) h_1(t) dt
ight] \ &= e^{-2t} \left[\int e^{2t} \left(rac{1}{3} e^t + rac{2}{3} e^{-t}
ight) dt
ight] \ &= e^{-2t} \left[\left(rac{1}{9} e^{3t} + rac{2}{3} e^t
ight)
ight] = rac{1}{9} e^t + rac{2}{3} e^{-t} \end{aligned}$$

Solve for z_2

- We have $z_2' z_2 = \frac{2}{3}e^t + \frac{1}{3}e^{-t}$
- lacksquare The IF $\mu(t)=\exp(\int -dt)=e^{-t}$
- \triangleright By (14), a solution z_2 :

$$egin{aligned} z_2 &= rac{1}{\mu(t)} \left[\int \mu(t) h_2(t) dt
ight] \ &= e^t \left[\int e^{-t} \left(rac{2}{3} e^t + rac{1}{3} e^{-t}
ight) dt
ight] \ &= e^t \left[\left(rac{2}{3} t - rac{1}{6} e^{-2t}
ight)
ight] = rac{2}{3} t e^t - rac{1}{6} e^{-t} \end{aligned}$$

A solution Y of (10)

► So,

$$z = \begin{pmatrix} z_1 \\ z_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{9}e^t + \frac{2}{3}e^{-t} \\ \frac{2}{3}te^t - \frac{1}{6}e^{-t} \end{pmatrix}$$

Finally, a particular solution of (10):

$$\mathsf{Y} = \mathsf{Tz} = \left(\begin{array}{cc} 1 & -2 \\ -2 & 1 \end{array}\right) \left(\begin{array}{c} \frac{1}{9}e^t + \frac{2}{3}e^{-t} \\ \frac{2}{3}te^t - \frac{1}{6}e^{-t} \end{array}\right)$$

(I would leave it in this matrix form.)

The general solution of (10):

▶ The general solution (10):

$$y = Y + y_c = Y + c_1 y^{(1)} + c_2 y^{(2)}$$

(Again, I would leave it in this matrix form, where Y, $y^{(1)}$, $y^{(2)}$ are given above.)

Example 2

Find the general solution of

$$y' = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} y + \begin{pmatrix} -e^t \\ 2e^t \end{pmatrix}$$
 (12)

▶ The corresponding homogeneous equation

$$y' = \begin{pmatrix} 1 & 4 \\ 1 & 1 \end{pmatrix} y \tag{13}$$

► Eigenvalues of A, are given by

$$\begin{vmatrix} 1-r & 4 \\ 1 & 1-r \end{vmatrix} = 0 \Longrightarrow r^2 - 2r - 3 = 0 \Longrightarrow r = -1,3$$

➤ Since the eigenvalues are distinct, the corresponding eigen vectors would be linearly independent. So, we can use the method above.

Eigenvectors

▶ Eigenvectors for r = -1 is given by $(A - rI)\xi = 0$:

$$\left(\begin{array}{cc}2&4\\1&2\end{array}\right)\left(\begin{array}{c}\xi_1\\\xi_2\end{array}\right)=\left(\begin{array}{c}0\\0\end{array}\right)\Longrightarrow$$

$$\begin{cases} 0 = 0 \\ \xi_1 + 2\xi_2 = 0 \end{cases} \text{ With } \xi_2 = 1, \quad \xi^{(1)} = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$$

is an eigenvector for r = -1.

► Corresponding solution for the homogeneous ODE (13):

$$\xi^{(1)} = \xi^{(1)} e^{rt} = \begin{pmatrix} -2 \\ 1 \end{pmatrix} e^{-t}$$

Eigenvectors

▶ Eigenvectors for r = 3 is given by $(A - rI)\xi = 0$:

$$\begin{pmatrix} 1-3 & 4 \\ 1 & 1-3 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\begin{pmatrix} -2 & 4 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

The second row is a multiple of the first row. It follows:

$$\begin{cases} 0 = 0 \\ \xi_1 - 2\xi_2 = 0 \end{cases} \text{ With } \xi_2 = 1, \quad \xi^{(2)} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

is an eigenvector for r = 3.

► Corresponding solution for the homogeneous ODE (13):

$$x^{(2)} = \xi^{(2)} e^{rt} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} e^{3t}$$

The Matrix T

► The matrix T is

$$\mathsf{T} = \left(\begin{array}{cc} \xi^{(1)} & \xi^{(2)} \end{array}\right) = \left(\begin{array}{cc} -2 & 2 \\ 1 & 1 \end{array}\right)$$

Also

$$\mathsf{T}^{-1} = \frac{1}{|\mathsf{T}|} \left(\begin{array}{cc} 2 & -1 \\ 2 & 1 \end{array} \right) = -\frac{1}{4} \left(\begin{array}{cc} 1 & -2 \\ -1 & -2 \end{array} \right) = \left(\begin{array}{cc} -\frac{1}{4} & \frac{1}{2} \\ \frac{1}{4} & \frac{1}{2} \end{array} \right)$$

(I am OK with terminating decimal numbers, because there is no rounding involved.)

Change variable $z = T^{-1}y$

▶ We change variables $z = T^{-1}y$. By (8)

$$\left(\begin{array}{c}z_1'-r_1z_1\\z_2'-r_2z_1\end{array}\right)=\mathsf{T}^{-1}\mathsf{g}(t)=\left(\begin{array}{cc}-\frac{1}{4}&\frac{1}{2}\\\frac{1}{4}&\frac{1}{2}\end{array}\right)\mathsf{g}(t)$$

$$\left(\begin{array}{c}z_1'+z_1\\z_2'-3z_1\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{4}&\frac{1}{2}\\\frac{1}{4}&\frac{1}{2}\end{array}\right)\left(\begin{array}{c}-e^t\\2e^t\end{array}\right)=\left(\begin{array}{c}\frac{5}{4}e^t\\\frac{3}{4}e^t\end{array}\right)$$

Solve for z_1

- We have $z_1' + z_1 = \frac{5}{4}e^t$
- ▶ The IF $\mu(t) = \exp(\int dt) = e^t$
- ▶ By (14) a solution for z_1 :

$$z_1 = \frac{1}{\mu(t)} \left[\int \mu(t) h_1(t) dt \right] = e^{-t} \left[\int e^t \left(\frac{5}{4} e^t \right) dt \right]$$
$$= e^{-t} \left[\frac{5}{4} \int e^{2t} dt \right] = e^{-t} \left[\frac{5}{4} \frac{e^{2t}}{2} \right] = \frac{5}{8} e^t$$

Solve for z_2

- We have $z_2 3z_2 = \frac{3}{4}e^t$
- ► The IF $\mu(t) = \exp(\int -3dt) = e^{-3t}$
- ▶ By (14), a solution z_2 :

$$z_{2} = \frac{1}{\mu(t)} \left[\int \mu(t) h_{2}(t) dt \right] = e^{3t} \left[\int e^{-3t} \left(\frac{3}{4} e^{t} \right) dt \right]$$
$$= e^{3t} \left[\frac{3}{4} \int e^{-2t} dt \right] = \frac{3}{4} e^{3t} \frac{e^{-2t}}{-2} = -\frac{3}{8} e^{t}$$

A Particualr solution Y of (12)

► So,

$$z = \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = \left(\begin{array}{c} \frac{5}{8}e^t \\ -\frac{3}{8}e^t \end{array}\right)$$

Finally, a particual solution of (12):

$$\mathsf{Y} = \mathsf{Tz} = \left(\begin{array}{cc} -2 & 2 \\ 1 & 1 \end{array} \right) \left(\begin{array}{c} \frac{5}{8}e^t \\ -\frac{3}{8}e^t \end{array} \right) = \left(\begin{array}{c} -2e^t \\ \frac{1}{4}e^t \end{array} \right)$$

The general solution of (12):

▶ The general solution (12):

$$y = Y + y_c = Y + c_1 y^{(1)} + c_2 y^{(2)}$$

where Y, $y^{(1)}$, $y^{(2)}$ are given above.

The Solution of FOLE

- Recall a 1st-order Linear ODE had the form y' + p(t)y = g(t).
- ▶ The integrating factor: $\mu(t) = \exp\left(\int p(t)dt\right)$
- ► The general solution:

$$y = rac{1}{\mu(t)} \left[\int \mu(t) g(t) dt + c
ight].$$

With c = 0, a solution for y is:

$$y = \frac{1}{\mu(t)} \left[\int \mu(t)g(t)dt \right] \tag{14}$$

